mirror of https://github.com/hpcaitech/ColossalAI
248 lines
9.5 KiB
Python
248 lines
9.5 KiB
Python
# Adapted from https://github.com/ruixiangcui/AGIEval/blob/main/src/dataset_loader.py.
|
|
|
|
import ast
|
|
import glob
|
|
import os
|
|
from copy import deepcopy
|
|
from typing import Dict, List
|
|
|
|
import pandas as pd
|
|
from colossal_eval.utils import get_json_list
|
|
|
|
from colossalai.logging import DistributedLogger
|
|
|
|
from .base import BaseDataset
|
|
|
|
# define the datasets
|
|
english_qa_datasets = [
|
|
"lsat-ar",
|
|
"lsat-lr",
|
|
"lsat-rc",
|
|
"logiqa-en",
|
|
"sat-math",
|
|
"sat-en",
|
|
"aqua-rat",
|
|
"sat-en-without-passage",
|
|
"gaokao-english",
|
|
]
|
|
chinese_qa_datasets = [
|
|
"logiqa-zh",
|
|
"jec-qa-kd",
|
|
"jec-qa-ca",
|
|
"gaokao-chinese",
|
|
"gaokao-geography",
|
|
"gaokao-history",
|
|
"gaokao-biology",
|
|
"gaokao-chemistry",
|
|
"gaokao-physics",
|
|
"gaokao-mathqa",
|
|
]
|
|
english_cloze_datasets = ["math"]
|
|
chinese_cloze_datasets = ["gaokao-mathcloze"]
|
|
|
|
multi_choice_datasets = ["jec-qa-kd", "jec-qa-ca", "gaokao-physics", "gaokao-mathqa"]
|
|
math_output_datasets = {"gaokao-mathcloze", "math"}
|
|
|
|
default_inference_kwargs = {
|
|
"calculate_loss": True,
|
|
"all_classes": None,
|
|
"language": "Chinese",
|
|
"pretrain": False,
|
|
"max_new_tokens": 32,
|
|
}
|
|
|
|
|
|
def get_prompt(line: Dict, dataset_name: str, logger: DistributedLogger) -> Dict:
|
|
"""Modified from https://github.com/microsoft/AGIEval/blob/main/src/dataset_loader.py#L190"""
|
|
try:
|
|
all_classes = None
|
|
passage = line["passage"] if line["passage"] is not None else ""
|
|
|
|
if dataset_name in english_qa_datasets:
|
|
option_string = "ABCDEFG"
|
|
count = len(line["options"])
|
|
|
|
input = (
|
|
"Question: "
|
|
+ line["question"]
|
|
+ " "
|
|
+ "Choose from the following options: "
|
|
+ " ".join(line["options"])
|
|
+ "\n"
|
|
+ "Answer: "
|
|
)
|
|
|
|
all_classes = list(option_string[0:count])
|
|
|
|
elif dataset_name in chinese_qa_datasets:
|
|
option_string = "ABCDEFG"
|
|
count = len(line["options"])
|
|
|
|
input = "问题:" + line["question"] + " " + "从以下选项中选择:" + " ".join(line["options"]) + "\n" + "答案:"
|
|
|
|
all_classes = list(option_string[0:count])
|
|
|
|
elif dataset_name in english_cloze_datasets:
|
|
input = "Question: " + line["question"] + "\n" + "Answer: "
|
|
|
|
elif dataset_name in chinese_cloze_datasets:
|
|
input = "问题:" + line["question"] + "\n" + "答案:"
|
|
|
|
return {
|
|
"instruction": input if not passage else passage + "\n\n" + input,
|
|
"target": line["label"] if line["label"] else line["answer"],
|
|
}, all_classes
|
|
|
|
except NameError:
|
|
logger.info("Dataset not defined.")
|
|
|
|
|
|
# process few-shot raw_prompts
|
|
def combine_prompt(prompt_path, dataset_name, load_explanation=True, chat_mode=False):
|
|
skip_passage = False
|
|
if dataset_name == "sat-en-without-passage":
|
|
skip_passage = True
|
|
dataset_name = "sat-en"
|
|
demostrations = []
|
|
# read the prompts by context and explanation
|
|
context_row = [0, 1, 3, 5, 7, 9]
|
|
explanation_row = [0, 2, 4, 6, 8, 10]
|
|
raw_prompts_context = pd.read_csv(
|
|
prompt_path, header=0, skiprows=lambda x: x not in context_row, keep_default_na=False
|
|
)
|
|
raw_prompts_explanation = pd.read_csv(
|
|
prompt_path, header=0, skiprows=lambda x: x not in explanation_row, keep_default_na=False
|
|
).replace(r"\n\n", "\n", regex=True)
|
|
contexts = []
|
|
for line in list(raw_prompts_context[dataset_name]):
|
|
if line:
|
|
# print(line)
|
|
contexts.append(ast.literal_eval(line))
|
|
explanations = [exp for exp in raw_prompts_explanation[dataset_name] if exp]
|
|
|
|
for idx, (con, exp) in enumerate(zip(contexts, explanations)):
|
|
passage = con["passage"] if con["passage"] is not None and not skip_passage else ""
|
|
question = con["question"]
|
|
options = con["options"] if con["options"] is not None else ""
|
|
label = con["label"] if con["label"] is not None else ""
|
|
answer = con["answer"] if "answer" in con and con["answer"] is not None else ""
|
|
|
|
if dataset_name in english_qa_datasets:
|
|
question_input = (
|
|
"Question: "
|
|
+ passage
|
|
+ " "
|
|
+ question
|
|
+ "\n"
|
|
+ "Choose from the following options: "
|
|
+ " ".join(options)
|
|
+ "\n"
|
|
+ "Answer: {}".format(label)
|
|
)
|
|
elif dataset_name in chinese_qa_datasets:
|
|
question_input = (
|
|
"问题:" + passage + " " + question + "\n" + "从以下选项中选择:" + " ".join(options) + "\n" + "答案:{}".format(label)
|
|
)
|
|
elif dataset_name in english_cloze_datasets:
|
|
question_input = "Question: ".format(idx + 1) + question + "\n" + "Answer: {}".format(answer)
|
|
elif dataset_name in chinese_cloze_datasets:
|
|
question_input = "问题:" + question + "\n" + "答案:{}".format(answer)
|
|
else:
|
|
raise ValueError(f"During loading few-sot examples, found unknown dataset: {dataset_name}")
|
|
|
|
if chat_mode:
|
|
demostrations.append((question_input,))
|
|
else:
|
|
demostrations.append(question_input + "\n")
|
|
|
|
return demostrations
|
|
|
|
|
|
class AGIEvalDataset(BaseDataset):
|
|
"""
|
|
Dataset wrapper for AGIEval dataset.
|
|
Data source: https://github.com/microsoft/AGIEval
|
|
This dataset class will convert the original dataset into the inference dataset.
|
|
|
|
A few dirty data needed to be manually corrected in the origin dataset:
|
|
Issue link: https://github.com/microsoft/AGIEval/issues/16
|
|
1. Invalid options in line 190 in gaokao-chemistry.jsonl.
|
|
2. Option D (They may increase in value as those same resources become rare on Earth.) missing in line 17 in sat-en-without-passage.jsonl.
|
|
3. Option D (They may increase in value as those same resources become rare on Earth.) missing in line 17 in sat-en.jsonl.
|
|
4. Option D (No, because the data do not indicate whether the honeybees had been infected with mites.) missing in line 57 in sat-en-without-passage.jsonl.
|
|
5. Option D (No, because the data do not indicate whether the honeybees had been infected with mites.) missing in line 57 in sat-en.jsonl.
|
|
6. Option D (Published theories of scientists who developed earlier models of the Venus flytrap) missing in line 98 in sat-en-without-passage.jsonl.
|
|
7. Option D (Published theories of scientists who developed earlier models of the Venus flytrap) missing in line 98 in sat-en.jsonl.
|
|
8. Label is empty in line 212 in jec-qa-kd.jsonl. Content is also dirty.
|
|
9. Actually, gaokao-mathqa.jsonl is also a multi-choice dataset. See line 149 286 287.
|
|
"""
|
|
|
|
@staticmethod
|
|
def load(path: str, logger: DistributedLogger, few_shot: bool) -> List[Dict]:
|
|
dataset = {"test": {}}
|
|
|
|
files = glob.glob(os.path.join(path, "*.jsonl"))
|
|
files.sort()
|
|
|
|
if few_shot:
|
|
prompt_path = os.path.join(path, "few_shot_prompts.csv")
|
|
|
|
for file in files:
|
|
dataset_name = os.path.basename(file)[0 : -len(".jsonl")]
|
|
|
|
few_shot_data = []
|
|
if few_shot:
|
|
# process demo once if it is few-shot-CoT
|
|
few_shot_data = combine_prompt(prompt_path, dataset_name, load_explanation=False, chat_mode=False)
|
|
|
|
dataset["test"][dataset_name] = {"data": []}
|
|
|
|
file_dir = os.path.join(path, file)
|
|
|
|
loaded_jsonl = get_json_list(file_dir)
|
|
|
|
# It's been tested that each data sample in one subcategory have same inference arguments.
|
|
_, all_classes = get_prompt(loaded_jsonl[0], dataset_name, logger)
|
|
inference_kwargs = deepcopy(default_inference_kwargs)
|
|
if all_classes is not None and dataset_name not in multi_choice_datasets:
|
|
inference_kwargs["all_classes"] = all_classes
|
|
|
|
if dataset_name in english_qa_datasets:
|
|
inference_kwargs["language"] = "English"
|
|
if dataset_name in chinese_qa_datasets:
|
|
inference_kwargs["language"] = "Chinese"
|
|
inference_kwargs["few_shot_data"] = few_shot_data
|
|
|
|
dataset["test"][dataset_name]["inference_kwargs"] = inference_kwargs
|
|
|
|
for line in loaded_jsonl:
|
|
info, all_classes = get_prompt(line, dataset_name, logger)
|
|
|
|
# Convert multi-choice answers to a single string.
|
|
# We will convert it back when evaluating.
|
|
# We do this because if target is a list, it should be only used for multiple target answers.
|
|
if dataset_name in multi_choice_datasets:
|
|
if isinstance(info["target"], str) and len(info["target"]) > 1:
|
|
# "gaokao-mathqa" actually contain multi-choice questions.
|
|
# This if clause is specially used for it.
|
|
info["target"] = "".join(info["target"].split())
|
|
else:
|
|
info["target"] = "".join(info["target"])
|
|
|
|
if isinstance(info["target"], list) and len(info["target"]) == 1:
|
|
info["target"] = info["target"][0]
|
|
|
|
data_sample = {
|
|
"dataset": "agieval",
|
|
"split": "test",
|
|
"category": dataset_name,
|
|
"instruction": info["instruction"],
|
|
"input": "",
|
|
"output": "",
|
|
"target": info["target"],
|
|
}
|
|
|
|
dataset["test"][dataset_name]["data"].append(data_sample)
|
|
|
|
return dataset
|