mirror of https://github.com/hpcaitech/ColossalAI
250 lines
11 KiB
Python
250 lines
11 KiB
Python
import argparse
|
|
import warnings
|
|
|
|
import torch
|
|
import torch.distributed as dist
|
|
from coati.dataset import PromptDataset, SupervisedDataset
|
|
from coati.models.bloom import BLOOMRM, BLOOMActor, BLOOMCritic
|
|
from coati.models.gpt import GPTRM, GPTActor, GPTCritic
|
|
from coati.models.llama import LlamaActor, LlamaCritic, LlamaRM
|
|
from coati.models.opt import OPTRM, OPTActor, OPTCritic
|
|
from coati.trainer import PPOTrainer
|
|
from coati.trainer.strategies import DDPStrategy, GeminiStrategy, LowLevelZeroStrategy
|
|
from torch.optim import Adam
|
|
from torch.utils.data import DataLoader
|
|
from torch.utils.data.distributed import DistributedSampler
|
|
from transformers import AutoTokenizer, BloomTokenizerFast, GPT2Tokenizer, LlamaTokenizer
|
|
|
|
from colossalai.nn.optimizer import HybridAdam
|
|
|
|
|
|
def main(args):
|
|
# configure strategy
|
|
if args.strategy == "ddp":
|
|
strategy = DDPStrategy()
|
|
elif args.strategy == "colossalai_gemini":
|
|
strategy = GeminiStrategy(placement_policy="static", initial_scale=2**5)
|
|
elif args.strategy == "colossalai_zero2":
|
|
strategy = LowLevelZeroStrategy(stage=2, placement_policy="cuda")
|
|
else:
|
|
raise ValueError(f'Unsupported strategy "{args.strategy}"')
|
|
|
|
if args.rm_path is not None:
|
|
warnings.warn("LoRA weights should be merged with the model weights")
|
|
state_dict = torch.load(args.rm_path, map_location="cpu")
|
|
|
|
if args.lora_rank > 0:
|
|
warnings.warn("Lora is not supported yet.")
|
|
args.lora_rank = 0
|
|
|
|
with strategy.model_init_context():
|
|
# configure model
|
|
if args.model == "gpt2":
|
|
initial_model = GPTActor(pretrained=args.pretrain)
|
|
elif args.model == "bloom":
|
|
initial_model = BLOOMActor(pretrained=args.pretrain)
|
|
elif args.model == "opt":
|
|
initial_model = OPTActor(pretrained=args.pretrain)
|
|
elif args.model == "llama":
|
|
initial_model = LlamaActor(pretrained=args.pretrain)
|
|
else:
|
|
raise ValueError(f'Unsupported actor model "{args.model}"')
|
|
|
|
if args.rm_model is None:
|
|
rm_model_name = args.model
|
|
else:
|
|
rm_model_name = args.rm_model
|
|
|
|
if rm_model_name == "gpt2":
|
|
reward_model = GPTRM(pretrained=args.rm_pretrain, lora_rank=args.lora_rank)
|
|
elif rm_model_name == "bloom":
|
|
reward_model = BLOOMRM(pretrained=args.rm_pretrain, lora_rank=args.lora_rank)
|
|
elif rm_model_name == "opt":
|
|
reward_model = OPTRM(pretrained=args.rm_pretrain, lora_rank=args.lora_rank)
|
|
elif rm_model_name == "llama":
|
|
reward_model = LlamaRM(pretrained=args.rm_pretrain, lora_rank=args.lora_rank)
|
|
else:
|
|
raise ValueError(f'Unsupported reward model "{rm_model_name}"')
|
|
|
|
if args.rm_path is not None:
|
|
reward_model.load_state_dict(state_dict, strict=False)
|
|
|
|
initial_model.to(torch.bfloat16).to(torch.cuda.current_device())
|
|
reward_model.to(torch.bfloat16).to(torch.cuda.current_device())
|
|
|
|
if args.model == "gpt2":
|
|
actor = GPTActor(pretrained=args.pretrain, lora_rank=args.lora_rank)
|
|
elif args.model == "bloom":
|
|
actor = BLOOMActor(pretrained=args.pretrain, lora_rank=args.lora_rank)
|
|
elif args.model == "opt":
|
|
actor = OPTActor(pretrained=args.pretrain, lora_rank=args.lora_rank)
|
|
elif args.model == "llama":
|
|
actor = LlamaActor(pretrained=args.pretrain, lora_rank=args.lora_rank)
|
|
else:
|
|
raise ValueError(f'Unsupported actor model "{args.model}"')
|
|
|
|
if rm_model_name == "gpt2":
|
|
critic = GPTCritic(pretrained=args.rm_pretrain, lora_rank=args.lora_rank)
|
|
elif rm_model_name == "bloom":
|
|
critic = BLOOMCritic(pretrained=args.rm_pretrain, lora_rank=args.lora_rank)
|
|
elif rm_model_name == "opt":
|
|
critic = OPTCritic(pretrained=args.rm_pretrain, lora_rank=args.lora_rank)
|
|
elif rm_model_name == "llama":
|
|
critic = LlamaCritic(pretrained=args.rm_pretrain, lora_rank=args.lora_rank)
|
|
else:
|
|
raise ValueError(f'Unsupported reward model "{rm_model_name}"')
|
|
|
|
if args.rm_path is not None:
|
|
critic.load_state_dict(state_dict, strict=False)
|
|
del state_dict
|
|
|
|
actor.to(torch.bfloat16).to(torch.cuda.current_device())
|
|
critic.to(torch.bfloat16).to(torch.cuda.current_device())
|
|
|
|
# configure optimizer
|
|
if args.strategy.startswith("colossalai"):
|
|
actor_optim = HybridAdam(actor.parameters(), lr=args.lr)
|
|
critic_optim = HybridAdam(critic.parameters(), lr=args.lr)
|
|
else:
|
|
actor_optim = Adam(actor.parameters(), lr=args.lr)
|
|
critic_optim = Adam(critic.parameters(), lr=args.lr)
|
|
|
|
# configure tokenizer
|
|
if args.model == "gpt2":
|
|
tokenizer = GPT2Tokenizer.from_pretrained("gpt2" if args.tokenizer is None else args.tokenizer)
|
|
tokenizer.pad_token = tokenizer.eos_token
|
|
elif args.model == "bloom":
|
|
tokenizer = BloomTokenizerFast.from_pretrained(
|
|
"bigscience/bloom-560m" if args.tokenizer is None else args.tokenizer
|
|
)
|
|
tokenizer.pad_token = tokenizer.eos_token
|
|
elif args.model == "opt":
|
|
tokenizer = AutoTokenizer.from_pretrained("facebook/opt-350m" if args.tokenizer is None else args.tokenizer)
|
|
tokenizer.pad_token = tokenizer.eos_token
|
|
elif args.model == "llama":
|
|
tokenizer = LlamaTokenizer.from_pretrained(
|
|
"hf-internal-testing/llama-tokenizer" if args.tokenizer is None else args.tokenizer
|
|
)
|
|
tokenizer.eos_token = "<\s>"
|
|
tokenizer.pad_token = tokenizer.unk_token
|
|
else:
|
|
raise ValueError(f'Unsupported model "{args.model}"')
|
|
# NOTE: generate() requires padding_side to be "left"
|
|
tokenizer.padding_side = "left"
|
|
|
|
prompt_dataset = PromptDataset(
|
|
tokenizer=tokenizer,
|
|
data_path=args.prompt_dataset,
|
|
max_datasets_size=args.max_datasets_size,
|
|
max_length=args.max_input_len,
|
|
)
|
|
if dist.is_initialized() and dist.get_world_size() > 1:
|
|
prompt_sampler = DistributedSampler(prompt_dataset, shuffle=True, seed=42, drop_last=True)
|
|
else:
|
|
prompt_sampler = None
|
|
prompt_dataloader = DataLoader(
|
|
prompt_dataset, shuffle=(prompt_sampler is None), sampler=prompt_sampler, batch_size=args.experience_batch_size
|
|
)
|
|
|
|
pretrain_dataset = SupervisedDataset(
|
|
tokenizer=tokenizer,
|
|
data_path=args.pretrain_dataset,
|
|
max_datasets_size=args.max_datasets_size,
|
|
max_length=args.max_input_len,
|
|
)
|
|
if dist.is_initialized() and dist.get_world_size() > 1:
|
|
pretrain_sampler = DistributedSampler(pretrain_dataset, shuffle=True, seed=42, drop_last=True)
|
|
else:
|
|
pretrain_sampler = None
|
|
pretrain_dataloader = DataLoader(
|
|
pretrain_dataset, shuffle=(pretrain_sampler is None), sampler=pretrain_sampler, batch_size=args.ptx_batch_size
|
|
)
|
|
|
|
# NOTE: For small models like opt-1.3b, reward model and initial model are not required to be parallelized.
|
|
(actor, actor_optim), (critic, critic_optim), reward_model, initial_model = strategy.prepare(
|
|
(actor, actor_optim), (critic, critic_optim), reward_model, initial_model
|
|
)
|
|
|
|
# configure trainer
|
|
trainer = PPOTrainer(
|
|
strategy,
|
|
actor,
|
|
critic,
|
|
reward_model,
|
|
initial_model,
|
|
actor_optim,
|
|
critic_optim,
|
|
tokenizer=tokenizer,
|
|
kl_coef=args.kl_coef,
|
|
ptx_coef=args.ptx_coef,
|
|
train_batch_size=args.train_batch_size,
|
|
max_length=args.max_seq_len,
|
|
use_cache=True,
|
|
do_sample=True,
|
|
temperature=1.0,
|
|
top_k=50,
|
|
offload_inference_models=args.strategy != "colossalai_gemini",
|
|
)
|
|
|
|
trainer.fit(
|
|
num_episodes=args.num_episodes,
|
|
num_collect_steps=args.num_collect_steps,
|
|
num_update_steps=args.num_update_steps,
|
|
prompt_dataloader=prompt_dataloader,
|
|
pretrain_dataloader=pretrain_dataloader,
|
|
log_dir=args.log_dir,
|
|
use_wandb=args.use_wandb,
|
|
)
|
|
|
|
if args.lora_rank > 0 and args.merge_lora_weights:
|
|
from coati.models.lora import LORA_MANAGER
|
|
|
|
# NOTE: set model to eval to merge LoRA weights
|
|
LORA_MANAGER.merge_weights = True
|
|
actor.eval()
|
|
# save model checkpoint after fitting
|
|
strategy.save_pretrained(actor, path=args.save_path)
|
|
# save optimizer checkpoint on all ranks
|
|
if args.need_optim_ckpt:
|
|
strategy.save_optimizer(
|
|
actor_optim, "actor_optim_checkpoint_prompts_%d.pt" % (torch.cuda.current_device()), only_rank0=False
|
|
)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument("--prompt_dataset", type=str, default=None, help="path to the prompt dataset")
|
|
parser.add_argument("--pretrain_dataset", type=str, default=None, help="path to the pretrained dataset")
|
|
parser.add_argument("--max_datasets_size", type=int, default=50000)
|
|
parser.add_argument(
|
|
"--strategy",
|
|
choices=["ddp", "colossalai_gemini", "colossalai_zero2"],
|
|
default="colossalai_zero2",
|
|
help="strategy to use",
|
|
)
|
|
parser.add_argument("--model", default="gpt2", choices=["gpt2", "bloom", "opt", "llama"])
|
|
parser.add_argument("--tokenizer", type=str, default=None)
|
|
parser.add_argument("--pretrain", type=str, default=None)
|
|
parser.add_argument("--rm_model", default=None, choices=["gpt2", "bloom", "opt", "llama"])
|
|
parser.add_argument("--rm_path", type=str, default=None)
|
|
parser.add_argument("--rm_pretrain", type=str, default=None)
|
|
parser.add_argument("--save_path", type=str, default="actor_checkpoint_prompts")
|
|
parser.add_argument("--need_optim_ckpt", type=bool, default=False)
|
|
parser.add_argument("--num_episodes", type=int, default=10)
|
|
parser.add_argument("--num_collect_steps", type=int, default=10)
|
|
parser.add_argument("--num_update_steps", type=int, default=5)
|
|
parser.add_argument("--train_batch_size", type=int, default=8)
|
|
parser.add_argument("--ptx_batch_size", type=int, default=1)
|
|
parser.add_argument("--experience_batch_size", type=int, default=8)
|
|
parser.add_argument("--lora_rank", type=int, default=0, help="low-rank adaptation matrices rank")
|
|
parser.add_argument("--merge_lora_weights", type=bool, default=True)
|
|
parser.add_argument("--lr", type=float, default=1e-7)
|
|
parser.add_argument("--kl_coef", type=float, default=0.1)
|
|
parser.add_argument("--ptx_coef", type=float, default=0.9)
|
|
parser.add_argument("--max_input_len", type=int, default=96)
|
|
parser.add_argument("--max_seq_len", type=int, default=128)
|
|
parser.add_argument("--log_dir", default="logs", type=str)
|
|
parser.add_argument("--use_wandb", default=False, action="store_true")
|
|
args = parser.parse_args()
|
|
main(args)
|