mirror of https://github.com/hpcaitech/ColossalAI
80 lines
2.7 KiB
Python
80 lines
2.7 KiB
Python
import argparse
|
|
import dataclasses
|
|
import os
|
|
import parser
|
|
from typing import List
|
|
|
|
import tqdm
|
|
from coati.models.bloom import BLOOMRM, BLOOMActor, BLOOMCritic
|
|
from coati.models.gpt import GPTRM, GPTActor, GPTCritic
|
|
from coati.models.opt import OPTRM, OPTActor, OPTCritic
|
|
from huggingface_hub import hf_hub_download, snapshot_download
|
|
from transformers import AutoConfig, AutoTokenizer, BloomConfig, BloomTokenizerFast, GPT2Config, GPT2Tokenizer
|
|
|
|
|
|
@dataclasses.dataclass
|
|
class HFRepoFiles:
|
|
repo_id: str
|
|
files: List[str]
|
|
|
|
def download(self, dir_path: str):
|
|
for file in self.files:
|
|
file_path = hf_hub_download(self.repo_id, file, local_dir=dir_path)
|
|
|
|
def download_all(self):
|
|
snapshot_download(self.repo_id)
|
|
|
|
|
|
def test_init(model: str, dir_path: str):
|
|
if model == "gpt2":
|
|
config = GPT2Config.from_pretrained(dir_path)
|
|
actor = GPTActor(config=config)
|
|
critic = GPTCritic(config=config)
|
|
reward_model = GPTRM(config=config)
|
|
GPT2Tokenizer.from_pretrained(dir_path)
|
|
elif model == "bloom":
|
|
config = BloomConfig.from_pretrained(dir_path)
|
|
actor = BLOOMActor(config=config)
|
|
critic = BLOOMCritic(config=config)
|
|
reward_model = BLOOMRM(config=config)
|
|
BloomTokenizerFast.from_pretrained(dir_path)
|
|
elif model == "opt":
|
|
config = AutoConfig.from_pretrained(dir_path)
|
|
actor = OPTActor(config=config)
|
|
critic = OPTCritic(config=config)
|
|
reward_model = OPTRM(config=config)
|
|
AutoTokenizer.from_pretrained(dir_path)
|
|
else:
|
|
raise NotImplementedError(f"Model {model} not implemented")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument("--model-dir", type=str, default="test_models")
|
|
parser.add_argument("--config-only", default=False, action="store_true")
|
|
args = parser.parse_args()
|
|
|
|
if os.path.exists(args.model_dir):
|
|
print(f"[INFO]: {args.model_dir} already exists")
|
|
exit(0)
|
|
|
|
repo_list = {
|
|
"gpt2": HFRepoFiles(repo_id="gpt2", files=["config.json", "tokenizer.json", "vocab.json", "merges.txt"]),
|
|
"bloom": HFRepoFiles(
|
|
repo_id="bigscience/bloom-560m", files=["config.json", "tokenizer.json", "tokenizer_config.json"]
|
|
),
|
|
"opt": HFRepoFiles(
|
|
repo_id="facebook/opt-350m", files=["config.json", "tokenizer_config.json", "vocab.json", "merges.txt"]
|
|
),
|
|
}
|
|
|
|
os.mkdir(args.model_dir)
|
|
for model_name in tqdm.tqdm(repo_list):
|
|
dir_path = os.path.join(args.model_dir, model_name)
|
|
if args.config_only:
|
|
os.mkdir(dir_path)
|
|
repo_list[model_name].download(dir_path)
|
|
else:
|
|
repo_list[model_name].download_all()
|
|
test_init(model_name, dir_path)
|