ColossalAI/colossalai/zero/legacy/sharded_model/_utils.py

78 lines
2.7 KiB
Python

from typing import Any, Callable, List, Tuple, Union
import torch
import torch.nn.functional as F
from colossalai.zero.legacy.gemini.stateful_tensor import StatefulTensor
def get_gradient_predivide_factor(world_size: int) -> float:
factor: int = 1
while world_size % factor == 0 and world_size / factor > factor:
factor *= 2
return float(factor)
def free_storage(data: torch.Tensor) -> None:
"""Free underlying storage of a Tensor."""
if data.storage().size() > 0:
# Since we're modifying the Tensor's Storage directly, make sure the Tensor
# is the sole occupant of the Storage.
assert data.storage_offset() == 0
data.storage().resize_(0)
@torch.no_grad()
def alloc_storage(data: torch.Tensor, size: torch.Size) -> None:
"""Allocate storage for a tensor."""
if data.storage().size() == size.numel(): # no need to reallocate
return
assert data.storage().size() == 0
data.storage().resize_(size.numel())
def cast_tensor_to_fp16(tensor: torch.Tensor) -> torch.Tensor:
if isinstance(tensor, StatefulTensor):
tensor = tensor.payload
if torch.is_floating_point(tensor) and tensor.dtype is torch.float32:
return tensor.half()
return tensor
def cast_tensor_to_fp32(tensor: Union[torch.Tensor, StatefulTensor]) -> torch.Tensor:
if isinstance(tensor, StatefulTensor):
tensor = tensor.payload
if torch.is_floating_point(tensor) and tensor.dtype is torch.float16:
return tensor.float()
return tensor
def apply_to_tensors(x: Any, fn: Callable):
if torch.is_tensor(x):
return fn(x)
elif isinstance(x, list):
return [apply_to_tensors(t, fn) for t in x]
elif isinstance(x, tuple):
return tuple(apply_to_tensors(t, fn) for t in x)
elif isinstance(x, dict):
return {key: apply_to_tensors(val, fn) for key, val in x.items()}
else:
return x
def cast_float_arguments(fn: Callable, *args: Any, **kwargs: Any) -> Tuple[Any, Any]:
return apply_to_tensors(args, fn), apply_to_tensors(kwargs, fn)
def chunk_and_pad(tensor: torch.Tensor, num_chunks: int) -> List[torch.Tensor]:
"""Chunk a given Tensor into num_chunks parts and add any necessary padding."""
chunks = list(torch.flatten(tensor).chunk(num_chunks))
# torch.chunk may return fewer than num_chunks chunks, pad accordingly.
num_pad_for_partial_chunk = chunks[0].numel() - chunks[-1].numel()
if num_pad_for_partial_chunk > 0:
chunks[-1] = F.pad(chunks[-1], [0, num_pad_for_partial_chunk])
if len(chunks) < num_chunks:
chunks.extend([torch.zeros_like(chunks[0]) for _ in range(num_chunks - len(chunks))])
return chunks