mirror of https://github.com/hpcaitech/ColossalAI
238 lines
9.1 KiB
Python
238 lines
9.1 KiB
Python
from copy import deepcopy
|
|
from typing import Dict, List
|
|
|
|
from ..utils import merge_same_dim_mesh_list
|
|
from .misc import ShardingOutOfIndexError
|
|
|
|
__all__ = ['DimSpec', 'ShardingException', 'ShardingSpec']
|
|
|
|
ALLGATHER_COST = 20
|
|
SHARD_COST = 5
|
|
STEP_PENALTY = 6
|
|
NAN = 'nan'
|
|
|
|
|
|
class DimSpec:
|
|
'''
|
|
Sharding spec for single dimension of the sharded tensor describe the sharding dimension of
|
|
logical device mesh and give a method to compute the difference between them.
|
|
This class is used internally in ShardingSpec.
|
|
|
|
Argument:
|
|
shard_list(List[int]): if shard_list is None, the dim spec will be 'R' type.
|
|
Otherwise, the element in shard_list means the data will be sharded in that dimension.
|
|
'''
|
|
|
|
def __init__(self, shard_list):
|
|
self.is_replica = len(shard_list) == 0
|
|
self.shard_list = shard_list
|
|
self.build_difference_2d_dict()
|
|
|
|
def __eq__(self, other):
|
|
return str(self) == str(other)
|
|
|
|
def __repr__(self):
|
|
if self.is_replica:
|
|
return 'R'
|
|
target = 'S'
|
|
for dim in self.shard_list:
|
|
target += str(dim)
|
|
return target
|
|
|
|
def _convert_str_to_shard_list(self, str_spec):
|
|
'''
|
|
Conver str_spec into shard_list.
|
|
|
|
Argument:
|
|
str_spec(str): dim spec in str type.
|
|
'''
|
|
|
|
if str_spec == 'R':
|
|
return []
|
|
if str_spec == 'S0':
|
|
return [0]
|
|
if str_spec == 'S1':
|
|
return [1]
|
|
if str_spec == 'S01':
|
|
return [0, 1]
|
|
|
|
def build_difference_2d_dict(self):
|
|
'''
|
|
Build a difference maping for 2D device mesh case. It will be used to
|
|
compute the difference between DimSpec pairs.
|
|
'''
|
|
|
|
source_spec_list = ['R', 'S0', 'S1', 'S01']
|
|
target_spec_list = ['R', 'S0', 'S1', 'S01']
|
|
difference_dict = {}
|
|
for source_spec in source_spec_list:
|
|
for target_spec in target_spec_list:
|
|
legal_sharding_dims = []
|
|
spec_pair = (deepcopy(source_spec), deepcopy(target_spec))
|
|
source_shard_list = self._convert_str_to_shard_list(source_spec)
|
|
target_shard_list = self._convert_str_to_shard_list(target_spec)
|
|
|
|
# source same as target
|
|
if source_shard_list == target_shard_list:
|
|
difference = 0
|
|
|
|
# all_gather(source) -> target
|
|
elif len(source_shard_list
|
|
) == len(target_shard_list) + 1 and source_shard_list[:-1] == target_shard_list:
|
|
difference = ALLGATHER_COST
|
|
|
|
# shard(source) -> target
|
|
elif len(source_shard_list) == len(
|
|
target_shard_list) - 1 and source_shard_list == target_shard_list[:-1] and target_shard_list[
|
|
-1] not in source_shard_list:
|
|
difference = SHARD_COST
|
|
|
|
# S1 -> S0 or S0 -> S1
|
|
elif len(source_shard_list) == len(target_shard_list):
|
|
# source -> R -> target
|
|
difference = ALLGATHER_COST + STEP_PENALTY + SHARD_COST
|
|
|
|
# R -> S01
|
|
elif len(source_shard_list) == len(target_shard_list) - 2:
|
|
difference = SHARD_COST + STEP_PENALTY + SHARD_COST
|
|
|
|
# S01 -> R
|
|
elif len(source_shard_list) == len(target_shard_list) + 2:
|
|
difference = ALLGATHER_COST + STEP_PENALTY + ALLGATHER_COST
|
|
|
|
# S1 -> S01
|
|
elif len(source_shard_list) == len(target_shard_list) - 1:
|
|
difference = ALLGATHER_COST + STEP_PENALTY + SHARD_COST + STEP_PENALTY + SHARD_COST
|
|
|
|
# S01 -> S1
|
|
elif len(source_shard_list) == len(target_shard_list) + 1:
|
|
difference = ALLGATHER_COST + STEP_PENALTY + ALLGATHER_COST + STEP_PENALTY + SHARD_COST
|
|
|
|
else:
|
|
difference = NAN
|
|
difference_dict[spec_pair] = difference
|
|
|
|
self.difference_dict = difference_dict
|
|
|
|
def dim_diff(self, other):
|
|
'''
|
|
The difference between two _DimSpec.
|
|
|
|
Argument:
|
|
other(_DimSpec): the dim spec to compare with.
|
|
|
|
Return:
|
|
difference(int): the difference between two _DimSpec.
|
|
|
|
Example:
|
|
dim_spec = _DimSpec([0])
|
|
other_dim_spec = _DimSpec([0, 1])
|
|
print(dim_spec.difference(other_dim_spec))
|
|
|
|
Output:
|
|
5
|
|
'''
|
|
difference = self.difference_dict[(str(self), str(other))]
|
|
return difference
|
|
|
|
|
|
class ShardingSpec:
|
|
'''
|
|
Sharding spec describes how to shard a tensor with dim_size dimensions. The sharding sequence looks like
|
|
[R, R, S0, S1], which means
|
|
|
|
Argument:
|
|
dim_partition_dict(Dict[int, List[int]], optional): The key is the dimension of tensor to be sharded,
|
|
and the value of the key describe which logical axis will be sharded in that dimension.
|
|
sharding_sequence(List[DimSpec], optional): A straight view of ShardingSpec looks like [R, R, S0, S1].
|
|
'''
|
|
|
|
def __init__(self,
|
|
dim_size: int,
|
|
dim_partition_dict: Dict[int, List[int]] = None,
|
|
sharding_sequence: List[DimSpec] = None):
|
|
self.dims = dim_size
|
|
self.dim_partition_dict = dim_partition_dict
|
|
self.sharding_sequence = sharding_sequence
|
|
if self.sharding_sequence is None:
|
|
assert self.dim_partition_dict is not None, f'dim_partition_dict should not be None, if sharding_sequence is NoneType object.'
|
|
self.dim_partition_dict = merge_same_dim_mesh_list(dim_size=self.dims,
|
|
dim_partition_dict=self.dim_partition_dict)
|
|
self.sharding_sequence = self.convert_dict_to_shard_sequence()
|
|
|
|
elif self.dim_partition_dict is None:
|
|
assert self.sharding_sequence is not None, f'sharding_sequence should not be None, if dim_partition_dict is NoneType object.'
|
|
self.dim_partition_dict = self.convert_shard_sequence_to_dict()
|
|
|
|
self._sanity_check()
|
|
|
|
def _sanity_check(self):
|
|
if len(self.sharding_sequence) > self.dims:
|
|
raise ShardingOutOfIndexError(
|
|
f'sharding_sequence should have {self.dims} elements, but got index {len(self.sharding_sequence)}.')
|
|
|
|
if list(self.dim_partition_dict.keys()) and max(list(self.dim_partition_dict.keys())) >= self.dims:
|
|
raise ShardingOutOfIndexError(
|
|
f'the key of dim_partition_dict should be less than {self.dims}, but got {max(list(self.dim_partition_dict.keys()))}.'
|
|
)
|
|
|
|
def __repr__(self):
|
|
res_list = ["ShardingSpec:"]
|
|
res_list.append(f"\n\tshard_sequence: " + ",".join(str(dimspec) for dimspec in self.sharding_sequence))
|
|
return ' '.join(res_list)
|
|
|
|
def convert_dict_to_shard_sequence(self):
|
|
'''
|
|
Convert dim_partition_dict into list of DimSpec, and assign it to sharding_sequence.
|
|
'''
|
|
sharding_sequence = [DimSpec([])] * self.dims
|
|
for dim, shard_list in self.dim_partition_dict.items():
|
|
sharding_sequence[dim] = DimSpec(shard_list)
|
|
return sharding_sequence
|
|
|
|
def convert_shard_sequence_to_dict(self):
|
|
'''
|
|
Convert sharding_sequence into dim_partition_dict.
|
|
'''
|
|
new_dim_partition_dict = {}
|
|
for index, dim_spec in enumerate(self.sharding_sequence):
|
|
if not dim_spec.is_replica:
|
|
if index not in new_dim_partition_dict:
|
|
new_dim_partition_dict[index] = []
|
|
new_dim_partition_dict[index].extend(dim_spec.shard_list)
|
|
return new_dim_partition_dict
|
|
|
|
def spec_diff(self, other):
|
|
'''
|
|
This function is a naive version of difference computation. It just simply accumulates difference every dimension between the
|
|
pair of sharding sequence.
|
|
|
|
Example:
|
|
dim_partition_dict = {0: [0, 1]}
|
|
# DistSpec:
|
|
# shard_sequence: S01,R,R
|
|
# device_mesh_shape: (4, 4)
|
|
sharding_spec = ShardingSpec(device_mesh, entire_shape, dim_partition_dict)
|
|
dim_partition_dict_to_compare = {0: [0], 1: [1]}
|
|
# DistSpec:
|
|
# shard_sequence: S0,S1,R
|
|
# device_mesh_shape: (4, 4)
|
|
sharding_spec_to_compare = ShardingSpec(device_mesh, entire_shape, dim_partition_dict_to_compare)
|
|
print(sharding_spec.sharding_sequence_difference(sharding_spec_to_compare))
|
|
|
|
Output:
|
|
25
|
|
|
|
Argument:
|
|
other(ShardingSpec): The ShardingSpec to compared with.
|
|
|
|
Return:
|
|
difference(int): Difference between two ShardingSpec.
|
|
'''
|
|
assert len(self.sharding_sequence) == len(
|
|
other.sharding_sequence), f'Cannot compare difference for two sharding specs with different length.'
|
|
difference = 0
|
|
for orig_dim_spec, other_dim_spec in zip(self.sharding_sequence, other.sharding_sequence):
|
|
difference += orig_dim_spec.dim_diff(other_dim_spec)
|
|
return difference
|