mirror of https://github.com/hpcaitech/ColossalAI
227 lines
9.8 KiB
Python
227 lines
9.8 KiB
Python
import math
|
|
from abc import ABC
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
import torch.distributed as dist
|
|
from colossalai.utils import get_current_device
|
|
from colossalai.context import MOE_CONTEXT
|
|
from colossalai.nn.layer.moe._operation import moe_cumsum
|
|
from typing import Callable, Optional
|
|
from torch.distributed import ProcessGroup
|
|
|
|
|
|
class MoeRouter(nn.Module, ABC):
|
|
"""Base class for all MoE routers.
|
|
Args:
|
|
k_value (int): The value of top_k.
|
|
capacity_factor_train (float): Capacity factor in routing of training.
|
|
capacity_factor_eval (float): Capacity factor in routing of evaluation.
|
|
min_capacity (int): The minimum number of the capacity of each expert.
|
|
noisy_func (:class:`typing.Callable`, optional): Noisy function used in logits.
|
|
drop_tks (bool, optional): Whether drops tokens in evaluation
|
|
"""
|
|
|
|
def __init__(self,
|
|
k_value: int,
|
|
capacity_factor_train: float,
|
|
capacity_factor_eval: float,
|
|
min_capacity: int,
|
|
noisy_func: Callable = None,
|
|
drop_tks: bool = True):
|
|
super().__init__()
|
|
self.k_value = k_value
|
|
self.capacity_factor_train = capacity_factor_train
|
|
self.capacity_factor_eval = capacity_factor_eval
|
|
self.min_capacity = min_capacity
|
|
self.noisy_func = noisy_func
|
|
self.drop_tks = drop_tks
|
|
self._routing_loss = None
|
|
|
|
def get_capacity(self, logits_shape):
|
|
capacity_factor = self.capacity_factor_train if self.training else self.capacity_factor_eval
|
|
capacity = math.floor(self.k_value * capacity_factor * logits_shape[-2] / logits_shape[-1])
|
|
capacity += capacity % 2
|
|
capacity = max(capacity, self.min_capacity)
|
|
assert capacity > 0
|
|
return capacity
|
|
|
|
def set_routing_loss(self, aux_loss: torch.Tensor) -> None:
|
|
assert self._routing_loss is None
|
|
self._routing_loss = aux_loss
|
|
|
|
def pop_routing_loss(self) -> torch.Tensor:
|
|
assert self._routing_loss is not None
|
|
reservation = self._routing_loss
|
|
self._routing_loss = None
|
|
return reservation
|
|
|
|
|
|
class Top1Router(MoeRouter):
|
|
"""Top1 router that returns the dispatch mask [s, e, c] and combine weight [s, e, c]
|
|
for routing usage. More detailed function can be found in the paper about Switch Transformer
|
|
of Google.
|
|
Args:
|
|
capacity_factor_train (float, optional): Capacity factor in routing of training.
|
|
capacity_factor_eval (float, optional): Capacity factor in routing of evaluation.
|
|
min_capacity (int, optional): The minimum number of the capacity of each expert.
|
|
select_policy (str, optional): The policy about tokens selection.
|
|
noisy_func (:class:`typing.Callable`, optional): Noisy function used in logits.
|
|
drop_tks (bool, optional): Whether drops tokens in evaluation
|
|
"""
|
|
|
|
def __init__(self,
|
|
capacity_factor_train: float = 1.25,
|
|
capacity_factor_eval: float = 2.0,
|
|
min_capacity: int = 4,
|
|
select_policy: str = "first",
|
|
noisy_func: Callable = None,
|
|
drop_tks: bool = True):
|
|
super().__init__(k_value=1,
|
|
capacity_factor_train=capacity_factor_train,
|
|
capacity_factor_eval=capacity_factor_eval,
|
|
min_capacity=min_capacity,
|
|
noisy_func=noisy_func,
|
|
drop_tks=drop_tks)
|
|
self.select_policy = select_policy
|
|
assert select_policy in {"first", "random"}
|
|
if select_policy == "random":
|
|
self.uniform = torch.distributions.uniform.Uniform(low=torch.tensor(0.0, device=get_current_device()),
|
|
high=torch.tensor(1.0,
|
|
device=get_current_device())).rsample
|
|
|
|
def forward(self, inputs: torch.Tensor, use_kernel: bool = False, ep_group: Optional[ProcessGroup] = None):
|
|
|
|
if self.noisy_func is not None and self.training:
|
|
inputs = self.noisy_func(inputs)
|
|
|
|
assert inputs.dtype == torch.float
|
|
logits = F.softmax(inputs, dim=-1)
|
|
num_experts = logits.size(-1)
|
|
capacity = self.get_capacity(logits.shape)
|
|
|
|
top1_idx = torch.argmax(inputs, dim=-1)
|
|
mask = F.one_hot(top1_idx, num_classes=num_experts).to(torch.int32)
|
|
|
|
# caculate the auxiliary loss
|
|
me = torch.mean(logits, dim=0)
|
|
ce = torch.mean(mask.float(), dim=0)
|
|
l_aux = num_experts * torch.sum(me * ce)
|
|
self.set_routing_loss(l_aux)
|
|
|
|
if not self.training and not self.drop_tks:
|
|
max_num = torch.max(torch.sum(mask, dim=0))
|
|
dist.all_reduce(max_num, op=dist.ReduceOp.MAX, group=ep_group)
|
|
capacity = max_num.item()
|
|
|
|
if self.select_policy == "random":
|
|
rand_mask = mask * self.uniform(mask.shape)
|
|
_, dispatch_idx = torch.topk(rand_mask, k=capacity, dim=0)
|
|
mask = mask * torch.zeros_like(mask).scatter_(0, dispatch_idx, 1)
|
|
ranks = moe_cumsum(mask)
|
|
elif self.select_policy == "first":
|
|
ranks = moe_cumsum(mask)
|
|
mask = mask * torch.lt(ranks, capacity)
|
|
else:
|
|
raise NotImplementedError("Not support such select policy yet.")
|
|
|
|
ranks = torch.sum(mask * ranks, dim=-1)
|
|
|
|
if use_kernel:
|
|
mask = torch.sum(mask, dim=-1)
|
|
mask = torch.stack([mask], dim=0).to(torch.int32)
|
|
dest_idx = torch.stack([top1_idx * capacity + ranks], dim=0).to(torch.int32)
|
|
return logits, mask, dest_idx, num_experts * capacity
|
|
else:
|
|
ranks = F.one_hot(ranks, num_classes=capacity)
|
|
weight = mask * logits.type_as(inputs)
|
|
combine_weights = weight.unsqueeze(2) * ranks.unsqueeze(1)
|
|
sec_mask = combine_weights.bool()
|
|
return combine_weights, sec_mask
|
|
|
|
|
|
class Top2Router(MoeRouter):
|
|
"""Top2 router that returns the dispatch mask [s, e, c] and combine weight [s, e, c]
|
|
for routing usage. More detailed function can be found in the paper about ViT-MoE.
|
|
Args:
|
|
capacity_factor_train (float, optional): Capacity factor in routing of training.
|
|
capacity_factor_eval (float, optional): Capacity factor in routing of evaluation.
|
|
min_capacity (int, optional): The minimum number of the capacity of each expert
|
|
noisy_func (:class:`typing.Callable`, optional): Noisy function used in logits.
|
|
drop_tks (bool, optional): Whether drops tokens in evaluation.
|
|
"""
|
|
|
|
def __init__(self,
|
|
capacity_factor_train: float = 1.25,
|
|
capacity_factor_eval: float = 2.0,
|
|
min_capacity: int = 4,
|
|
noisy_func: Callable = None,
|
|
drop_tks: bool = True):
|
|
super().__init__(k_value=2,
|
|
capacity_factor_train=capacity_factor_train,
|
|
capacity_factor_eval=capacity_factor_eval,
|
|
min_capacity=min_capacity,
|
|
noisy_func=noisy_func,
|
|
drop_tks=drop_tks)
|
|
|
|
def forward(self, inputs: torch.Tensor, use_kernel: bool = False, ep_group: Optional[ProcessGroup] = None):
|
|
# inputs: [s, h]
|
|
if self.noisy_func is not None and self.training:
|
|
inputs = self.noisy_func(inputs)
|
|
|
|
assert inputs.dtype == torch.float
|
|
logits = F.softmax(inputs, dim=-1) # logits: [s, e]
|
|
num_experts = logits.size(-1)
|
|
capacity = self.get_capacity(logits.shape)
|
|
|
|
top1_idx = torch.argmax(logits, dim=-1)
|
|
mask1 = F.one_hot(top1_idx, num_classes=num_experts).to(torch.int32)
|
|
logits_except1 = logits.masked_fill(mask1.bool(), float("-inf"))
|
|
top2_idx = torch.argmax(logits_except1, dim=-1)
|
|
mask2 = F.one_hot(top2_idx, num_classes=num_experts).to(torch.int32)
|
|
|
|
cmask = (mask1 + mask2) # loss: [s, e]
|
|
|
|
# caculate the auxiliary loss
|
|
me = torch.mean(logits, dim=0)
|
|
ce = torch.mean(cmask.float(), dim=0)
|
|
l_aux = num_experts * torch.sum(me * ce) / 2.0 # div 2 to normalize it to 1
|
|
self.set_routing_loss(l_aux)
|
|
|
|
if not self.training and not self.drop_tks:
|
|
max_num = torch.max(torch.sum(cmask, dim=0))
|
|
dist.all_reduce(max_num, op=dist.ReduceOp.MAX, group=ep_group)
|
|
capacity = max_num.item()
|
|
|
|
rank1 = moe_cumsum(mask1) # rank1: [s, e]
|
|
rank2 = moe_cumsum(mask2)
|
|
rank2 += torch.sum(mask1, dim=-2, keepdim=True)
|
|
|
|
mask1 *= torch.lt(rank1, capacity)
|
|
mask2 *= torch.lt(rank2, capacity)
|
|
|
|
rank1 = torch.sum(mask1 * rank1, dim=-1)
|
|
rank2 = torch.sum(mask2 * rank2, dim=-1)
|
|
|
|
if use_kernel:
|
|
mask1 = torch.sum(mask1, dim=-1)
|
|
mask2 = torch.sum(mask2, dim=-1)
|
|
|
|
mask = torch.stack([mask1, mask2], dim=0).to(torch.int32)
|
|
dest_idx = torch.stack([top1_idx * capacity + rank1, top2_idx * capacity + rank2], dim=0).to(torch.int32)
|
|
|
|
return logits, mask, dest_idx, num_experts * capacity
|
|
else:
|
|
weight1 = mask1 * logits.type_as(inputs)
|
|
weight2 = mask2 * logits.type_as(inputs)
|
|
rank1_sc = F.one_hot(rank1, num_classes=capacity)
|
|
rank2_sc = F.one_hot(rank2, num_classes=capacity)
|
|
|
|
cb_weight1 = weight1.unsqueeze(2) * rank1_sc.unsqueeze(1)
|
|
cb_weight2 = weight2.unsqueeze(2) * rank2_sc.unsqueeze(1)
|
|
cb_weight = cb_weight1 + cb_weight2
|
|
sec_mask = cb_weight.bool()
|
|
|
|
return cb_weight, sec_mask
|