ColossalAI/colossalai/auto_parallel/checkpoint/ckpt_solver_rotor.py

440 lines
18 KiB
Python

from copy import deepcopy
from typing import Any, Dict, List, Tuple
from torch import Tensor
from torch.fx import Graph, Node
from colossalai.auto_parallel.passes.runtime_apply_pass import runtime_apply, runtime_comm_spec_apply
from colossalai.fx.codegen.activation_checkpoint_codegen import _find_nested_ckpt_regions
from colossalai.fx.profiler import (
activation_size,
calculate_bwd_time,
calculate_fwd_out,
calculate_fwd_time,
calculate_fwd_tmp,
)
from colossalai.logging import get_dist_logger
from .ckpt_solver_base import CheckpointSolverBase
from .operation import Backward, Chain, ForwardCheck, ForwardEnable, ForwardNograd, Loss, Sequence
__all__ = ['CheckpointSolverRotor']
class CheckpointSolverRotor(CheckpointSolverBase):
def __init__(self,
graph: Graph,
free_memory: float = -1,
cnode: List[str] = None,
memory_slots: int = 500,
optim_multiplier: float = 1.0):
"""This is the simple implementation of dynamic programming algorithm rotor
in https://hal.inria.fr/hal-02352969. Some code are adapted from
https://gitlab.inria.fr/hiepacs/rotor.
Usage:
Assume that we have a ``GraphModule``, and we have already done the extractions
to the graph to retrieve all information needed, then we could use the following
code to find a solution using ``CheckpointSolverRotor``:
>>> solver = CheckpointSolverRotor(gm.graph, free_memory=torch.cuda.mem_get_info(device=0)[0])
>>> rotor_graph = solver.solve(force_python=True) # otherwise use C solver
>>> gm.graph = rotor_graph # set the graph to a new graph
Args:
graph (Graph): The computing graph to be optimized.
free_memory (float, optional): Memory constraint for the solution, unit is byte.
Use ``torch.cuda.mem_get_info(device=0)[0]`` to estimate the free_memory. Defaults to -1.
cnode (List[str], optional): Common node List, should be the subset of input. Defaults to None.
memory_slots (int, optional): Number of slots for discretizing memory budget. Defaults to 500.
optim_multiplier (float, optional): The multiplier of extra weight storage for the
``torch.optim.Optimizer``. Default to 1.0.
"""
super().__init__(graph, free_memory, True, cnode, optim_multiplier)
self.memory_slots = memory_slots
# construct chain
unit = self.free_memory // self.memory_slots
self.chain = self._construct_chain(self.graph, self.node_list)
self.chain.discretize_all(unit)
self.cost_table = None
self.back_ptr = None
self.sequence = None
def solve(self, force_python: bool = False, verbose: bool = False) -> Graph:
"""Solve the checkpointing problem using rotor algorithm.
Args:
force_python (bool, optional): Use Python version of solver, else use C version. Defaults to False.
verbose (bool, optional): Print verbose information. Defaults to False.
Returns:
graph (Graph): The optimized graph, should be a copy of the original graph.
"""
chain = self.chain
# compute cost table
if force_python:
self.cost_table, self.back_ptr = self._compute_table(chain, self.memory_slots)
else:
self.cost_table, self.back_ptr = self._compute_table_c(chain, self.memory_slots)
if verbose:
self.print_chain()
# backtrack
try:
self.sequence = self._backtrack(chain, 0, len(chain), self.memory_slots - chain.x[0], self.cost_table,
self.back_ptr)
self._annotate_from_sequence(self.sequence, self.node_list)
except ValueError as e:
# using logger to annonce that the solver is failed
logger = get_dist_logger()
logger.warning(f'Checkpoint solver failed: {e}')
raise ValueError
if verbose:
self.print_sequence()
return deepcopy(self.graph)
def print_chain(self):
print('[input]', self.chain.x[0], self.chain.xbar[0], self.chain.ftmp[0], self.chain.btmp[0])
for idx in range(len(self.node_list) - 1):
print(self.node_list[idx], self.chain.x[idx + 1], self.chain.xbar[idx + 1], self.chain.ftmp[idx],
self.chain.btmp[idx])
print(f'Chain = {self.chain}')
def print_sequence(self):
print(f'Sequence = {self.sequence}')
@classmethod
def _construct_chain(cls, graph: Graph, node_list: List[List[Node]]) -> Chain:
input_tensors = cls._extract_input(graph)
ftime, btime, ftmp, btmp = list(), list(), list(), list()
xbar, x = [activation_size(input_tensors)], [activation_size(input_tensors)]
for node in node_list:
node_info = cls._extract_node_info(node)
ftime.append(node_info[0])
btime.append(node_info[1])
x.append(node_info[2])
xbar.append(node_info[3])
ftmp.append(node_info[4])
btmp.append(node_info[5])
# currently we view loss backward temp as zero
btime.append(0)
btmp.append(0)
return Chain(ftime, btime, x, xbar, ftmp, btmp)
@classmethod
def _extract_node_info(cls, node: List[Node]) -> Tuple[int, ...]:
"""Extract node info from a list of nodes"""
xbar = 0
ftime = 0
btime = 0
fwd_mem_peak = 0
for n in node:
assert isinstance(n, Node), f'{n} is not a Node'
if n.target == runtime_apply or n.target == runtime_comm_spec_apply:
# in this case we need to calculate memory usage directly based on the statics that hooked in node.meta
xbar += n.meta['fwd_mem_out']
fwd_mem_peak = max(fwd_mem_peak, xbar + n.meta['fwd_mem_tmp'])
else:
xbar += calculate_fwd_tmp(n) + calculate_fwd_out(n)
fwd_mem_peak = max(fwd_mem_peak, xbar + n.meta['fwd_mem_tmp'] + cls._extract_unused_output(n))
# minimum flop count is required
ftime += max(calculate_fwd_time(n), 1.0)
btime += max(calculate_bwd_time(n), 1.0)
x = calculate_fwd_out(node[-1])
xbar = max(x, xbar)
ftmp = fwd_mem_peak - xbar
btmp = cls._extract_btmp(node)
return ftime, btime, x, xbar, ftmp, btmp
@staticmethod
def _extract_input(graph: Graph) -> Tuple[Tensor, ...]:
"""Extract input tensors from a Graph"""
input_tensors = []
for node in graph.nodes:
if node.op == 'placeholder':
input_tensors.append(node.meta['fwd_out'])
return input_tensors
@staticmethod
def _extract_unused_output(node: Node) -> int:
"""Extract unused output from `torch.fx.Node`"""
return activation_size(node.meta['fwd_out']) - calculate_fwd_out(node)
@staticmethod
def _extract_btmp(node: List[Node]) -> int:
"""Extract btmp from a list of nodes"""
def _extract_deps_size():
deps_size = 0
for k, v in deps.items():
k: Node
if v > 0:
deps_size += k.meta['bwd_mem_out']
if v == float('-inf'):
deps_size -= calculate_fwd_tmp(k) + calculate_fwd_out(k)
return deps_size
btmp = 0
deps = {}
for n in reversed(node):
deps[n] = len(n.all_input_nodes)
btmp = max(btmp, _extract_deps_size() + n.meta['bwd_mem_tmp'])
for child in n.users:
if child in deps:
deps[child] -= 1
if deps[child] <= 0:
deps[child] = float('-inf') # free
return btmp
@staticmethod
def _compute_table(chain: Chain, mmax: int) -> Tuple:
"""Compute the table using dynamic programming. Returns the cost table and the backtracking pointer.
Args:
chain (Chain): A basic linearized structure for solving the dynamic programming problem.
mmax (int): Maximum number of memory slots.
Returns:
cost_table (List): cost_table[m][lhs][rhs] indicates the optimal cost of the subproblem from lhs to rhs
with m memory slots.
back_ptr (List): back_ptr[m][lhs][rhs] indicates the best operation at this point. It is (True,) if the optimal choice
is a chain checkpoint, it is (False, j) if the optimal choice is a leaf checkpoint of length j
"""
ftime = chain.ftime + [0.0]
btime = chain.btime
x = chain.x + [0]
xbar = chain.xbar + [0]
ftmp = chain.ftmp + [0]
btmp = chain.btmp + [0]
# Build table
cost_table = [[{} for _ in range(len(chain) + 1)] for _ in range(mmax + 1)]
back_ptr = [[{} for _ in range(len(chain) + 1)] for _ in range(mmax + 1)]
# Initialize corner cases where length of sequence equals to 1, i.e. lhs == rhs
for m in range(mmax + 1):
for i in range(len(chain) + 1):
limit = max(x[i + 1] + xbar[i + 1] + ftmp[i], x[i + 1] + xbar[i + 1] + btmp[i])
if m >= limit:
cost_table[m][i][i] = ftime[i] + btime[i]
else:
cost_table[m][i][i] = float("inf")
# Compute tables
for m in range(mmax + 1):
for d in range(1, len(chain) + 1):
for i in range(len(chain) + 1 - d):
idx = i + d
mmin = x[idx + 1] + x[i + 1] + ftmp[i]
if idx > i + 1:
mmin = max(mmin, x[idx + 1] + max(x[j] + x[j + 1] + ftmp[j] for j in range(i + 1, idx)))
if m < mmin:
cost_table[m][i][idx] = float("inf")
else:
leaf_checkpoints = [(j,
sum(ftime[i:j]) + cost_table[m - x[j]][j][idx] + cost_table[m][i][j - 1])
for j in range(i + 1, idx + 1)
if m >= x[j]]
if leaf_checkpoints:
best_leaf = min(leaf_checkpoints, key=lambda t: t[1])
else:
best_leaf = None
if m >= xbar[i + 1]:
chain_checkpoint = cost_table[m][i][i] + cost_table[m - xbar[i + 1]][i + 1][idx]
else:
chain_checkpoint = float("inf")
if best_leaf and best_leaf[1] <= chain_checkpoint:
cost_table[m][i][idx] = best_leaf[1]
back_ptr[m][i][idx] = (False, best_leaf[0])
else:
cost_table[m][i][idx] = chain_checkpoint
back_ptr[m][i][idx] = (True,)
return cost_table, back_ptr
@staticmethod
def _compute_table_c(chain: Chain, mmax: int) -> Tuple:
try:
from .rotorc import compute_table
# build module if module not found
except ModuleNotFoundError:
import os
import subprocess
import sys
logger = get_dist_logger()
logger.info("rotorc hasn't been built! Building library...", ranks=[0])
this_dir = os.path.dirname(os.path.abspath(__file__))
result = subprocess.Popen(
[
f"{sys.executable}", f"{os.path.join(this_dir, 'build_c_ext.py')}", "build_ext",
f"--build-lib={this_dir}"
],
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
)
if result.wait() == 0:
logger.info("rotorc has been built!", ranks=[0])
from .rotorc import compute_table
else:
logger.warning("rotorc built failed! Using python version!", ranks=[0])
return CheckpointSolverRotor._compute_table(chain, mmax)
return compute_table(chain, mmax)
@staticmethod
def _backtrack(chain: Chain, lhs: int, rhs: int, budget: int, cost_table: List[Any],
back_ptr: List[Any]) -> "Sequence":
"""Backtrack the cost table and retrieve the optimal checkpointing strategy.
Args:
chain (Chain): A basic linearized structure for solving the dynamic programming problem.
lhs (int): The left index of the interval to backtrack.
rhs (int): The right index of the interval to backtrack.
budget (int): The memory budget for processing this interval.
cost_table (List[Any]): See ``._compute_table()`` for definitions
back_ptr (List[Any]): See ``._compute_table()`` for definitions
Raises:
ValueError: Can not process the chain.
Returns:
sequence (Sequence): The sequence of executing nodes with checkpoints.
"""
if budget <= 0:
raise ValueError(f"Can not process a chain with negative memory {budget}")
elif cost_table[budget][lhs][rhs] == float("inf"):
raise ValueError(f"Can not process this chain from index {lhs} to {rhs} with memory {budget}")
sequence = Sequence()
if rhs == lhs:
if lhs == len(chain):
sequence += [Loss()]
else:
sequence += [ForwardEnable(lhs), Backward(lhs)]
return sequence
if back_ptr[budget][lhs][rhs][0]:
sequence += [
ForwardEnable(lhs),
CheckpointSolverRotor._backtrack(chain, lhs + 1, rhs, budget - chain.xbar[lhs + 1], cost_table,
back_ptr),
Backward(lhs),
]
else:
best_leaf = back_ptr[budget][lhs][rhs][1]
sequence += [ForwardCheck(lhs)]
sequence += [ForwardNograd(k) for k in range(lhs + 1, best_leaf)]
sequence += [
CheckpointSolverRotor._backtrack(chain, best_leaf, rhs, budget - chain.x[best_leaf], cost_table,
back_ptr),
CheckpointSolverRotor._backtrack(chain, lhs, best_leaf - 1, budget, cost_table, back_ptr),
]
return sequence
@staticmethod
def _annotate_from_sequence(sequence: Sequence, node_list: List[List[Node]]):
"""Annotate the nodes in the ``node_list`` with activation checkpoint from the sequence.
Args:
sequence (Sequence): The sequence of executing nodes with activation checkpoint annotations.
node_list (List[List[Node]]): The list of nodes to annotate.
"""
op_list = sequence.list_operations()
loss_op = next(op for op in op_list if isinstance(op, Loss))
fwd_list = op_list[:op_list.index(loss_op)]
bwd_list = op_list[op_list.index(loss_op) + 1:]
ckpt_idx = 0
in_ckpt = False
ckpt_region = []
# forward annotation
for idx, op in enumerate(fwd_list, 0):
if in_ckpt:
if isinstance(op, ForwardNograd):
ckpt_region.append(idx)
elif isinstance(op, ForwardEnable):
in_ckpt = False
for node_idx in ckpt_region:
for n in node_list[node_idx]:
n.meta['activation_checkpoint'] = [ckpt_idx]
ckpt_idx += 1
ckpt_region = []
elif isinstance(op, ForwardCheck):
for node_idx in ckpt_region:
for n in node_list[node_idx]:
n.meta['activation_checkpoint'] = [ckpt_idx]
ckpt_idx += 1
ckpt_region = [idx]
else:
if isinstance(op, ForwardCheck):
in_ckpt = True
ckpt_region.append(idx)
# annotate the backward if there is any nested activation checkpoint
in_recompute = False
for op in bwd_list:
if in_recompute:
if isinstance(op, ForwardNograd):
ckpt_region.append(op.index)
elif isinstance(op, ForwardEnable):
for node_idx in ckpt_region:
for n in node_list[node_idx]:
n.meta['activation_checkpoint'].append(ckpt_idx)
ckpt_idx += 1
ckpt_region = []
elif isinstance(op, ForwardCheck):
for node_idx in ckpt_region:
for n in node_list[node_idx]:
n.meta['activation_checkpoint'].append(ckpt_idx)
ckpt_idx += 1
ckpt_region = [op.index]
elif isinstance(op, Backward):
for node_idx in ckpt_region:
for n in node_list[node_idx]:
n.meta['activation_checkpoint'].append(ckpt_idx)
in_recompute = False
else:
if not isinstance(op, Backward):
in_recompute = True
ckpt_idx = 0
ckpt_region = []
if isinstance(op, ForwardCheck):
ckpt_region.append(op.index)
# postprocess, make sure every activation checkpoint label in the
# same activation checkpoint region (level = 0) has the same length
op_list = []
for node in node_list:
op_list += node
ckpt_regions = _find_nested_ckpt_regions(op_list)
for (start_idx, end_idx) in ckpt_regions:
nested_length = max(
len(op_list[idx].meta['activation_checkpoint']) for idx in range(start_idx, end_idx + 1))
for idx in range(start_idx, end_idx + 1):
op_list[idx].meta['activation_checkpoint'] += [None] * (nested_length -
len(op_list[idx].meta['activation_checkpoint']))