mirror of https://github.com/hpcaitech/ColossalAI
261 lines
9.4 KiB
Python
261 lines
9.4 KiB
Python
import collections
|
|
import logging
|
|
import os
|
|
import random
|
|
import time
|
|
from enum import IntEnum
|
|
from random import choice
|
|
|
|
import jieba
|
|
import torch
|
|
|
|
jieba.setLogLevel(logging.CRITICAL)
|
|
import re
|
|
|
|
import mask
|
|
import numpy as np
|
|
|
|
PAD = 0
|
|
MaskedLMInstance = collections.namedtuple("MaskedLMInstance", ["index", "label"])
|
|
|
|
|
|
def map_to_numpy(data):
|
|
return np.asarray(data)
|
|
|
|
|
|
class PreTrainingDataset():
|
|
|
|
def __init__(self,
|
|
tokenizer,
|
|
max_seq_length,
|
|
backend='python',
|
|
max_predictions_per_seq: int = 80,
|
|
do_whole_word_mask: bool = True):
|
|
self.tokenizer = tokenizer
|
|
self.max_seq_length = max_seq_length
|
|
self.masked_lm_prob = 0.15
|
|
self.backend = backend
|
|
self.do_whole_word_mask = do_whole_word_mask
|
|
self.max_predictions_per_seq = max_predictions_per_seq
|
|
self.vocab_words = list(tokenizer.vocab.keys())
|
|
self.rec = re.compile('[\u4E00-\u9FA5]')
|
|
self.whole_rec = re.compile('##[\u4E00-\u9FA5]')
|
|
|
|
self.mlm_p = 0.15
|
|
self.mlm_mask_p = 0.8
|
|
self.mlm_tamper_p = 0.05
|
|
self.mlm_maintain_p = 0.1
|
|
|
|
def tokenize(self, doc):
|
|
temp = []
|
|
for d in doc:
|
|
temp.append(self.tokenizer.tokenize(d))
|
|
return temp
|
|
|
|
def create_training_instance(self, instance):
|
|
is_next = 1
|
|
raw_text_list = self.get_new_segment(instance)
|
|
tokens_a = raw_text_list
|
|
assert len(tokens_a) == len(instance)
|
|
# tokens_a, tokens_b, is_next = instance.get_values()
|
|
# print(f'is_next label:{is_next}')
|
|
# Create mapper
|
|
tokens = []
|
|
original_tokens = []
|
|
segment_ids = []
|
|
tokens.append("[CLS]")
|
|
original_tokens.append('[CLS]')
|
|
segment_ids.append(0)
|
|
for index, token in enumerate(tokens_a):
|
|
tokens.append(token)
|
|
original_tokens.append(instance[index])
|
|
segment_ids.append(0)
|
|
|
|
tokens.append("[SEP]")
|
|
original_tokens.append('[SEP]')
|
|
segment_ids.append(0)
|
|
|
|
# for token in tokens_b:
|
|
# tokens.append(token)
|
|
# segment_ids.append(1)
|
|
|
|
# tokens.append("[SEP]")
|
|
# segment_ids.append(1)
|
|
|
|
# Get Masked LM predictions
|
|
if self.backend == 'c++':
|
|
output_tokens, masked_lm_output = mask.create_whole_masked_lm_predictions(
|
|
tokens, original_tokens, self.vocab_words, self.tokenizer.vocab, self.max_predictions_per_seq,
|
|
self.masked_lm_prob)
|
|
elif self.backend == 'python':
|
|
output_tokens, masked_lm_output = self.create_whole_masked_lm_predictions(tokens)
|
|
|
|
# Convert to Ids
|
|
input_ids = self.tokenizer.convert_tokens_to_ids(output_tokens)
|
|
input_mask = [1] * len(input_ids)
|
|
|
|
while len(input_ids) < self.max_seq_length:
|
|
input_ids.append(PAD)
|
|
segment_ids.append(PAD)
|
|
input_mask.append(PAD)
|
|
masked_lm_output.append(-1)
|
|
return ([
|
|
map_to_numpy(input_ids),
|
|
map_to_numpy(input_mask),
|
|
map_to_numpy(segment_ids),
|
|
map_to_numpy(masked_lm_output),
|
|
map_to_numpy([is_next])
|
|
])
|
|
|
|
def create_masked_lm_predictions(self, tokens):
|
|
cand_indexes = []
|
|
for i, token in enumerate(tokens):
|
|
if token == "[CLS]" or token == "[SEP]":
|
|
continue
|
|
if (self.do_whole_word_mask and len(cand_indexes) >= 1 and token.startswith("##")):
|
|
cand_indexes[-1].append(i)
|
|
else:
|
|
cand_indexes.append([i])
|
|
|
|
# cand_indexes.append(i)
|
|
|
|
random.shuffle(cand_indexes)
|
|
output_tokens = list(tokens)
|
|
|
|
num_to_predict = min(self.max_predictions_per_seq, max(1, int(round(len(tokens) * self.masked_lm_prob))))
|
|
|
|
masked_lms = []
|
|
covered_indexes = set()
|
|
for index in cand_indexes:
|
|
if len(masked_lms) >= num_to_predict:
|
|
break
|
|
if index in covered_indexes:
|
|
continue
|
|
covered_indexes.add(index)
|
|
|
|
masked_token = None
|
|
# 80% mask
|
|
if random.random() < 0.8:
|
|
masked_token = "[MASK]"
|
|
else:
|
|
# 10% Keep Original
|
|
if random.random() < 0.5:
|
|
masked_token = tokens[index]
|
|
# 10% replace w/ random word
|
|
else:
|
|
masked_token = self.vocab_words[random.randint(0, len(self.vocab_words) - 1)]
|
|
|
|
output_tokens[index] = masked_token
|
|
masked_lms.append(MaskedLMInstance(index=index, label=tokens[index]))
|
|
|
|
masked_lms = sorted(masked_lms, key=lambda x: x.index)
|
|
masked_lm_output = [-1] * len(output_tokens)
|
|
for p in masked_lms:
|
|
masked_lm_output[p.index] = self.tokenizer.vocab[p.label]
|
|
|
|
return (output_tokens, masked_lm_output)
|
|
|
|
def get_new_segment(self, segment):
|
|
"""
|
|
Input a sentence, return a processed sentence: In order to support the Chinese whole word mask, the words that are separated will be marked with a special mark ("#"), so that the subsequent processing module can know which words belong to the same word.
|
|
:param segment: a sentence
|
|
"""
|
|
seq_cws = jieba.lcut(''.join(segment))
|
|
seq_cws_dict = {x: 1 for x in seq_cws}
|
|
new_segment = []
|
|
i = 0
|
|
while i < len(segment):
|
|
if len(self.rec.findall(segment[i])) == 0:
|
|
new_segment.append(segment[i])
|
|
i += 1
|
|
continue
|
|
|
|
has_add = False
|
|
for length in range(3, 0, -1):
|
|
if i + length > len(segment):
|
|
continue
|
|
if ''.join(segment[i:i + length]) in seq_cws_dict:
|
|
new_segment.append(segment[i])
|
|
for l in range(1, length):
|
|
new_segment.append('##' + segment[i + l])
|
|
i += length
|
|
has_add = True
|
|
break
|
|
if not has_add:
|
|
new_segment.append(segment[i])
|
|
i += 1
|
|
return new_segment
|
|
|
|
def create_whole_masked_lm_predictions(self, tokens):
|
|
"""Creates the predictions for the masked LM objective."""
|
|
|
|
cand_indexes = []
|
|
for (i, token) in enumerate(tokens):
|
|
if token == "[CLS]" or token == "[SEP]":
|
|
continue
|
|
# Whole Word Masking means that if we mask all of the wordpieces
|
|
# corresponding to an original word. When a word has been split into
|
|
# WordPieces, the first token does not have any marker and any subsequence
|
|
# tokens are prefixed with ##. So whenever we see the ## token, we
|
|
# append it to the previous set of word indexes.
|
|
#
|
|
# Note that Whole Word Masking does *not* change the training code
|
|
# at all -- we still predict each WordPiece independently, softmaxed
|
|
# over the entire vocabulary.
|
|
if (self.do_whole_word_mask and len(cand_indexes) >= 1 and token.startswith("##")):
|
|
cand_indexes[-1].append(i)
|
|
else:
|
|
cand_indexes.append([i])
|
|
|
|
random.shuffle(cand_indexes)
|
|
|
|
output_tokens = [t[2:] if len(self.whole_rec.findall(t)) > 0 else t for t in tokens] # 去掉"##"
|
|
|
|
num_to_predict = min(self.max_predictions_per_seq, max(1, int(round(len(tokens) * self.masked_lm_prob))))
|
|
|
|
masked_lms = []
|
|
covered_indexes = set()
|
|
for index_set in cand_indexes:
|
|
if len(masked_lms) >= num_to_predict:
|
|
break
|
|
# If adding a whole-word mask would exceed the maximum number of
|
|
# predictions, then just skip this candidate.
|
|
if len(masked_lms) + len(index_set) > num_to_predict:
|
|
continue
|
|
is_any_index_covered = False
|
|
for index in index_set:
|
|
if index in covered_indexes:
|
|
is_any_index_covered = True
|
|
break
|
|
if is_any_index_covered:
|
|
continue
|
|
for index in index_set:
|
|
covered_indexes.add(index)
|
|
|
|
masked_token = None
|
|
# 80% of the time, replace with [MASK]
|
|
if random.random() < 0.8:
|
|
masked_token = "[MASK]"
|
|
else:
|
|
# 10% of the time, keep original
|
|
if random.random() < 0.5:
|
|
masked_token = tokens[index][2:] if len(self.whole_rec.findall(
|
|
tokens[index])) > 0 else tokens[index] # 去掉"##"
|
|
# 10% of the time, replace with random word
|
|
else:
|
|
masked_token = self.vocab_words[random.randint(0, len(self.vocab_words) - 1)]
|
|
|
|
output_tokens[index] = masked_token
|
|
|
|
masked_lms.append(
|
|
MaskedLMInstance(
|
|
index=index,
|
|
label=tokens[index][2:] if len(self.whole_rec.findall(tokens[index])) > 0 else tokens[index]))
|
|
assert len(masked_lms) <= num_to_predict
|
|
masked_lms = sorted(masked_lms, key=lambda x: x.index)
|
|
masked_lm_output = [-1] * len(output_tokens)
|
|
for p in masked_lms:
|
|
masked_lm_output[p.index] = self.tokenizer.vocab[p.label]
|
|
|
|
return (output_tokens, masked_lm_output)
|