mirror of https://github.com/hpcaitech/ColossalAI
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
62 lines
2.6 KiB
62 lines
2.6 KiB
import pytest
|
|
import torch.fx
|
|
from torch.fx import GraphModule
|
|
from torch.utils._pytree import tree_map
|
|
|
|
from colossalai.fx import ColoTracer, is_compatible_with_meta
|
|
from colossalai.fx.passes.meta_info_prop import MetaInfoProp
|
|
from colossalai.auto_parallel.offload.region_manager import RegionManager
|
|
from colossalai.auto_parallel.offload.solver import SolverFactory, NOT_NVML
|
|
from colossalai.testing import parameterize
|
|
from tests.test_auto_parallel.test_offload.model_utils import *
|
|
|
|
@pytest.mark.skipif(NOT_NVML, reason='pynvml is not installed')
|
|
@parameterize('model_name', ['gpt2_', 'bert_'])
|
|
@parameterize('memory_budget', [4000])
|
|
@parameterize('solver_name', ['syn', 'asyn'])
|
|
def solver_test(model_name: str,
|
|
memory_budget: float,
|
|
solver_name: str):
|
|
|
|
get_components_func = non_distributed_component_funcs.get_callable(model_name)
|
|
model_builder, data_gen = get_components_func()
|
|
data_args = data_gen(device="cpu")
|
|
wrap_fn = lambda x: x.to(dtype=torch.half) if isinstance(x, torch.Tensor) and torch.is_floating_point(x) else x
|
|
data_args = tree_map(wrap_fn, data_args)
|
|
model = model_builder()
|
|
model.train()
|
|
model = model.cpu().half()
|
|
|
|
tracer = ColoTracer()
|
|
assert is_compatible_with_meta()
|
|
wrap_fn = lambda x: x.to("meta") if isinstance(x, torch.Tensor) else x
|
|
meta_args = tree_map(wrap_fn, data_args)
|
|
graph = tracer.trace(model, meta_args=meta_args)
|
|
gm = GraphModule(model, graph, model.__class__.__name__)
|
|
|
|
interp = MetaInfoProp(gm)
|
|
interp.propagate(*meta_args.values())
|
|
|
|
region_manager = RegionManager(graph, solver_name=solver_name)
|
|
region_manager._pre_process()
|
|
region_list = region_manager.region_list
|
|
|
|
solver_cls = SolverFactory.create(solver_name)
|
|
memory_budget = memory_budget * 1024 * 1024
|
|
solver = solver_cls(region_list, memory_budget)
|
|
solver._call_solver()
|
|
|
|
assert solver.best_ts.peak_mem < memory_budget
|
|
|
|
print("****************** execution plan *******************")
|
|
for region in region_list:
|
|
need_offload = region.need_offload
|
|
to_prefetch = region.fwd_prefetch_region.r_id if region.fwd_prefetch_region is not None else None
|
|
print(f'| {model_name} forward | region id: {region.r_id} | need_offload: {need_offload} | to_prefetch: {to_prefetch}')
|
|
for region in region_list.__reversed__():
|
|
need_offload = region.need_offload
|
|
to_prefetch = region.bwd_prefetch_region.r_id if region.bwd_prefetch_region is not None else None
|
|
print(f'| {model_name} backward | region id: {region.r_id} | need_offload: {need_offload} | to_prefetch: {to_prefetch}')
|
|
|
|
if __name__ == '__main__':
|
|
solver_test() |