You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ColossalAI/applications/ColossalEval/colossal_eval/evaluate/evaluator.py

111 lines
4.3 KiB

import os
from typing import Any, Dict, List
import colossal_eval.evaluate.gpt_evaluate as gpt_evaluate
from .utils import get_data_per_category
class Evaluator(object):
"""
A class named Evaluator includes GPT-3.5/GPT-4 evaluation
"""
def __init__(
self,
params: Dict[str, Any],
battle_prompt: Dict[str, Any],
gpt_evaluation_prompt: Dict[str, Any],
gpt_model: str,
language: str,
gpt_with_reference: bool,
) -> None:
self.params = params
self.battle_prompt = battle_prompt
self.gpt_evaluation_prompt = gpt_evaluation_prompt
self.gpt_model = gpt_model
self.language = language
self.gpt_with_reference = gpt_with_reference
self.gpt_evaluation_results = dict()
self.battle_results = []
def battle(self, answers1: List[Dict], answers2: List[Dict]) -> None:
"""
Comparison between two models using GPT-4 as the reviewer.
"""
self.battle_results = gpt_evaluate.battle(answers1, answers2, self.battle_prompt)
def evaluate(self, answers: List[Dict], targets: List[Dict], save_path: str, model_name: str) -> None:
"""
A comprehensive evaluation of the answers from the model.
The function evaluates the model's performance from different perspectives
using GPT-3.5, GPT-4, and off-the-shelf evaluation metrics.
The metrics will be decided by the config file.
"""
answers_per_category = get_data_per_category(answers, list(self.params.keys()))
targets_per_category = get_data_per_category(targets, list(self.params.keys()))
# gpt evaluation
for category in self.params:
if len(answers_per_category[category]) == 0:
print(f"Category {category} specified in your config doesn't have corresponding answers!")
continue
if self.params[category].get("GPT", None) is None:
continue
category_metrics = self.params[category]["GPT"]
prompt = self.gpt_evaluation_prompt.get(category, None)
if prompt is None:
print(f"No prompt for category {category}! Use prompt for category general now.")
prompt = self.gpt_evaluation_prompt["general"]
self.gpt_evaluation_results[category] = gpt_evaluate.evaluate(
answers_per_category[category],
prompt,
category_metrics,
category,
save_path,
model_name,
self.gpt_model,
self.language,
references=targets_per_category[category] if self.gpt_with_reference else None,
)
def save(self, path: str, model_name_list: List[str]) -> None:
"""
Save evaluation results of GPT-3.5, GPT-4, and off-the-shelf evaluation metrics.
"""
if len(model_name_list) == 2:
save_path = os.path.join(path, "gpt_evaluate", "battle_results")
gpt_evaluate.save_battle_results(self.battle_results, model_name_list[0], model_name_list[1], save_path)
else:
if self.gpt_evaluation_results:
# Save evaluation results for GPT evaluation metrics.
gpt_base_save_path = os.path.join(path, "gpt_evaluate", "gpt_evaluate_results")
gpt_evaluation_results_save_path = os.path.join(gpt_base_save_path, "evaluation_results")
all_evaluations = gpt_evaluate.save_gpt_evaluation_results(
model_name_list[0], self.gpt_evaluation_results, gpt_evaluation_results_save_path
)
# Start to calculate scores and save statistics.
gpt_evaluation_statistics_save_path = os.path.join(gpt_base_save_path, "evaluation_statistics")
gpt_evaluate.save_gpt_evaluation_statistics(
model_name_list[0], all_evaluations, gpt_evaluation_statistics_save_path
)
# Save charts and csv.
gpt_evaluation_analyses_save_path = os.path.join(gpt_base_save_path, "evaluation_analyses")
gpt_evaluate.analyze_gpt_evaluation_statistics(
gpt_evaluation_statistics_save_path, gpt_evaluation_analyses_save_path
)