mirror of https://github.com/hpcaitech/ColossalAI
227 lines
10 KiB
Python
227 lines
10 KiB
Python
import argparse
|
|
|
|
import pandas as pd
|
|
import torch
|
|
import torch.distributed as dist
|
|
from coati.dataset import DataCollatorForSupervisedDataset, PromptDataset, SupervisedDataset
|
|
from coati.models.bloom import BLOOMRM, BLOOMCritic
|
|
from coati.models.gpt import GPTRM, GPTActor, GPTCritic
|
|
from coati.models.llama import LlamaActor, LlamaCritic, LlamaRM
|
|
from coati.models.opt import OPTRM, OPTActor, OPTCritic
|
|
from coati.trainer import PPOTrainer
|
|
from coati.trainer.strategies import ColossalAIStrategy, DDPStrategy, NaiveStrategy
|
|
from coati.utils import prepare_llama_tokenizer_and_embedding
|
|
from easy_dataset import EasyPromptsDataset, EasySupervisedDataset
|
|
from easy_models import BLOOMActor
|
|
from peft import PeftModel
|
|
from torch.optim import Adam
|
|
from torch.utils.data import DataLoader
|
|
from torch.utils.data.distributed import DistributedSampler
|
|
from transformers import AutoTokenizer, BloomTokenizerFast, GPT2Tokenizer, LlamaTokenizer
|
|
|
|
from colossalai.nn.optimizer import HybridAdam
|
|
|
|
|
|
def main(args):
|
|
# configure strategy
|
|
if args.strategy == 'naive':
|
|
strategy = NaiveStrategy()
|
|
elif args.strategy == 'ddp':
|
|
strategy = DDPStrategy()
|
|
elif args.strategy == 'colossalai_gemini':
|
|
strategy = ColossalAIStrategy(stage=3, placement_policy='cpu', initial_scale=2**5)
|
|
elif args.strategy == 'colossalai_zero2':
|
|
strategy = ColossalAIStrategy(stage=2, placement_policy='cpu')
|
|
else:
|
|
raise ValueError(f'Unsupported strategy "{args.strategy}"')
|
|
|
|
if args.rm_path is not None:
|
|
state_dict = torch.load(args.rm_path, map_location='cpu')
|
|
|
|
# configure model
|
|
if args.model == 'bloom':
|
|
# initial_model = BLOOMActor(pretrained=args.pretrain)
|
|
print('Using peft lora to load Bloom model as initial_model')
|
|
initial_model = BLOOMActor(pretrained=args.pretrain, lora_path=args.sft_lora_path)
|
|
print('Using peft lora to load Bloom model as initial_model (Done)')
|
|
else:
|
|
raise ValueError(f'Unsupported actor model "{args.model}"')
|
|
|
|
if args.rm_model == None:
|
|
rm_model_name = args.model
|
|
else:
|
|
rm_model_name = args.rm_model
|
|
|
|
if rm_model_name == 'gpt2':
|
|
reward_model = GPTRM(pretrained=args.rm_pretrain)
|
|
elif rm_model_name == 'bloom':
|
|
print("load bloom reward model ", args.rm_pretrain)
|
|
reward_model = BLOOMRM(pretrained=args.rm_pretrain)
|
|
elif rm_model_name == 'opt':
|
|
reward_model = OPTRM(pretrained=args.rm_pretrain)
|
|
elif rm_model_name == 'llama':
|
|
reward_model = LlamaRM(pretrained=args.rm_pretrain)
|
|
else:
|
|
raise ValueError(f'Unsupported reward model "{rm_model_name}"')
|
|
|
|
if args.rm_path is not None:
|
|
print('Loading reward model from', args.rm_path)
|
|
reward_model.load_state_dict(state_dict)
|
|
|
|
if args.strategy != 'colossalai_gemini':
|
|
initial_model.to(torch.float16).to(torch.cuda.current_device())
|
|
reward_model.to(torch.float16).to(torch.cuda.current_device())
|
|
|
|
with strategy.model_init_context():
|
|
if args.model == 'bloom':
|
|
# actor = BLOOMActor(pretrained=args.pretrain, lora_rank=args.lora_rank)
|
|
print('Using peft lora to load Bloom model as Actor')
|
|
actor = BLOOMActor(pretrained=args.pretrain, lora_path=args.sft_lora_path)
|
|
print('Using peft lora to load Bloom model as Actor (Done)')
|
|
else:
|
|
raise ValueError(f'Unsupported actor model "{args.model}"')
|
|
|
|
if rm_model_name == 'gpt2':
|
|
critic = GPTCritic(pretrained=args.rm_pretrain, lora_rank=args.lora_rank, use_action_mask=True)
|
|
elif rm_model_name == 'bloom':
|
|
print("load bloom critic ", args.rm_pretrain, " lora_rank ", args.lora_rank, " use_action_mask ", True)
|
|
critic = BLOOMCritic(pretrained=args.rm_pretrain, lora_rank=args.lora_rank, use_action_mask=True)
|
|
print("load bloom critic (Done) ")
|
|
elif rm_model_name == 'opt':
|
|
critic = OPTCritic(pretrained=args.rm_pretrain, lora_rank=args.lora_rank, use_action_mask=True)
|
|
elif rm_model_name == 'llama':
|
|
critic = LlamaCritic(pretrained=args.rm_pretrain, lora_rank=args.lora_rank, use_action_mask=True)
|
|
else:
|
|
raise ValueError(f'Unsupported reward model "{rm_model_name}"')
|
|
|
|
if args.rm_path is not None:
|
|
print('Loading reward model from', args.rm_path)
|
|
critic.load_state_dict(state_dict)
|
|
del state_dict
|
|
|
|
if args.strategy != 'colossalai_gemini':
|
|
critic.to(torch.float16).to(torch.cuda.current_device())
|
|
actor.to(torch.float16).to(torch.cuda.current_device())
|
|
|
|
# configure optimizer
|
|
if args.strategy.startswith('colossalai'):
|
|
actor_optim = HybridAdam(actor.parameters(), lr=1e-7)
|
|
critic_optim = HybridAdam(critic.parameters(), lr=1e-7)
|
|
else:
|
|
actor_optim = Adam(actor.parameters(), lr=1e-7)
|
|
critic_optim = Adam(critic.parameters(), lr=1e-7)
|
|
|
|
# configure tokenizer
|
|
if args.model == 'gpt2':
|
|
tokenizer = GPT2Tokenizer.from_pretrained(args.rm_pretrain)
|
|
elif args.model == 'bloom':
|
|
tokenizer = BloomTokenizerFast.from_pretrained(args.rm_pretrain)
|
|
elif args.model == 'opt':
|
|
tokenizer = AutoTokenizer.from_pretrained(args.rm_pretrain)
|
|
elif args.model == 'llama':
|
|
tokenizer = LlamaTokenizer.from_pretrained(args.pretrain)
|
|
tokenizer.eos_token = '<\s>'
|
|
else:
|
|
raise ValueError(f'Unsupported model "{args.model}"')
|
|
|
|
if args.model == 'llama':
|
|
tokenizer = prepare_llama_tokenizer_and_embedding(tokenizer, actor)
|
|
else:
|
|
tokenizer.pad_token = tokenizer.eos_token
|
|
|
|
data_collator = DataCollatorForSupervisedDataset(tokenizer=tokenizer)
|
|
|
|
prompt_dataset = EasyPromptsDataset(args.prompt_path, tokenizer)
|
|
if dist.is_initialized() and dist.get_world_size() > 1:
|
|
prompt_sampler = DistributedSampler(prompt_dataset, shuffle=True, seed=42, drop_last=True)
|
|
else:
|
|
prompt_sampler = None
|
|
prompt_dataloader = DataLoader(prompt_dataset,
|
|
shuffle=(prompt_sampler is None),
|
|
sampler=prompt_sampler,
|
|
batch_size=args.train_batch_size)
|
|
|
|
pretrain_dataset = EasySupervisedDataset(args.pretrain_dataset, tokenizer)
|
|
if dist.is_initialized() and dist.get_world_size() > 1:
|
|
pretrain_sampler = DistributedSampler(pretrain_dataset, shuffle=True, seed=42, drop_last=True)
|
|
else:
|
|
pretrain_sampler = None
|
|
pretrain_dataloader = DataLoader(pretrain_dataset,
|
|
shuffle=(pretrain_sampler is None),
|
|
sampler=pretrain_sampler,
|
|
batch_size=args.ptx_batch_size,
|
|
collate_fn=data_collator)
|
|
|
|
def tokenize_fn(texts):
|
|
# MUST padding to max length to ensure inputs of all ranks have the same length
|
|
# Different length may lead to hang when using gemini, as different generation steps
|
|
batch = tokenizer(texts, return_tensors='pt', max_length=96, padding='max_length', truncation=True)
|
|
return {k: v.to(torch.cuda.current_device()) for k, v in batch.items()}
|
|
|
|
(actor, actor_optim), (critic, critic_optim) = strategy.prepare((actor, actor_optim), (critic, critic_optim))
|
|
|
|
# configure trainer
|
|
trainer = PPOTrainer(
|
|
strategy,
|
|
actor,
|
|
critic,
|
|
reward_model,
|
|
initial_model,
|
|
actor_optim,
|
|
critic_optim,
|
|
kl_coef=args.kl_coef,
|
|
ptx_coef=args.ptx_coef,
|
|
train_batch_size=args.train_batch_size,
|
|
experience_batch_size=args.experience_batch_size,
|
|
tokenizer=tokenize_fn,
|
|
max_length=512,
|
|
do_sample=True,
|
|
temperature=1.0,
|
|
top_k=50,
|
|
pad_token_id=tokenizer.pad_token_id,
|
|
eos_token_id=tokenizer.eos_token_id,
|
|
)
|
|
|
|
trainer.fit(prompt_dataloader=prompt_dataloader,
|
|
pretrain_dataloader=pretrain_dataloader,
|
|
num_episodes=args.num_episodes,
|
|
num_update_steps=args.num_update_steps,
|
|
num_collect_steps=args.num_collect_steps)
|
|
|
|
# save model checkpoint after fitting
|
|
trainer.save_model(args.save_path, only_rank0=True, tokenizer=tokenizer)
|
|
# save optimizer checkpoint on all ranks
|
|
if args.need_optim_ckpt:
|
|
strategy.save_optimizer(actor_optim,
|
|
'actor_optim_checkpoint_prompts_%d.pt' % (torch.cuda.current_device()),
|
|
only_rank0=False)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument('--prompt_path', type=str, default=None, help='path to the prompt dataset')
|
|
parser.add_argument('--pretrain_dataset', type=str, default=None, help='path to the pretrained dataset')
|
|
parser.add_argument('--strategy',
|
|
choices=['naive', 'ddp', 'colossalai_gemini', 'colossalai_zero2'],
|
|
default='naive',
|
|
help='strategy to use')
|
|
parser.add_argument('--model', default='gpt2', choices=['gpt2', 'bloom', 'opt', 'llama'])
|
|
parser.add_argument('--pretrain', type=str, default=None)
|
|
parser.add_argument('--sft_lora_path', type=str, default=None)
|
|
parser.add_argument('--rm_model', default=None, choices=['gpt2', 'bloom', 'opt', 'llama'])
|
|
parser.add_argument('--rm_path', type=str, default=None)
|
|
parser.add_argument('--rm_pretrain', type=str, default=None)
|
|
parser.add_argument('--save_path', type=str, default='actor_checkpoint_prompts')
|
|
parser.add_argument('--need_optim_ckpt', type=bool, default=False)
|
|
parser.add_argument('--num_episodes', type=int, default=10)
|
|
parser.add_argument('--num_collect_steps', type=int, default=10)
|
|
parser.add_argument('--num_update_steps', type=int, default=5)
|
|
parser.add_argument('--train_batch_size', type=int, default=2)
|
|
parser.add_argument('--ptx_batch_size', type=int, default=1)
|
|
parser.add_argument('--experience_batch_size', type=int, default=8)
|
|
parser.add_argument('--lora_rank', type=int, default=0, help="low-rank adaptation matrices rank")
|
|
parser.add_argument('--kl_coef', type=float, default=0.1)
|
|
parser.add_argument('--ptx_coef', type=float, default=0.9)
|
|
args = parser.parse_args()
|
|
main(args)
|