mirror of https://github.com/hpcaitech/ColossalAI
aibig-modeldata-parallelismdeep-learningdistributed-computingfoundation-modelsheterogeneous-traininghpcinferencelarge-scalemodel-parallelismpipeline-parallelism
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
183 lines
5.5 KiB
183 lines
5.5 KiB
import copy |
|
|
|
import pytest |
|
import torch |
|
import torch.nn as nn |
|
from torch.nn.parallel import DistributedDataParallel as DDP |
|
from torch.testing import assert_close |
|
|
|
import colossalai |
|
from colossalai.testing import rerun_if_address_is_in_use, spawn |
|
from colossalai.testing.random import seed_all |
|
from colossalai.zero import LowLevelZeroOptimizer |
|
|
|
|
|
class MlpModel(nn.Module): |
|
|
|
def __init__(self): |
|
super(MlpModel, self).__init__() |
|
self.linear1 = nn.Linear(128, 256) |
|
self.linear2 = nn.Linear(256, 512) |
|
|
|
def forward(self, x): |
|
x = self.linear1(x) |
|
x = self.linear2(x) |
|
return x |
|
|
|
|
|
def half_close(a, b, loose=False): |
|
rtol = None |
|
atol = None |
|
if loose: |
|
rtol = 5e-2 |
|
atol = 5e-4 |
|
|
|
a = a.detach().half() |
|
b = b.detach().half() |
|
|
|
assert_close(a, b, rtol=rtol, atol=atol) |
|
|
|
|
|
def exam_zero_1_2(): |
|
""" |
|
In this test, we want to test whether zero stage 1 and 2 |
|
deliver the same numerical results despite different communication |
|
pattern |
|
|
|
we use these prefixes to differentiate the zero stage |
|
oss: partition optimizer states |
|
pg: partition gradients and optimizer states |
|
|
|
""" |
|
local_rank = torch.distributed.get_rank() |
|
seed_all(2001) |
|
|
|
# create model |
|
zero1_model = MlpModel().cuda() |
|
zero2_model = copy.deepcopy(zero1_model) |
|
|
|
# create optimizer |
|
zero1_optimizer = torch.optim.Adam(zero1_model.parameters(), lr=1) |
|
zero2_optimizer = torch.optim.Adam(zero2_model.parameters(), lr=1) |
|
zero1_optimizer = LowLevelZeroOptimizer(zero1_optimizer, |
|
overlap_communication=True, |
|
initial_scale=128, |
|
verbose=True) |
|
zero2_optimizer = LowLevelZeroOptimizer(zero2_optimizer, |
|
overlap_communication=True, |
|
partition_grad=True, |
|
initial_scale=128) |
|
# create data |
|
seed_all(2001 + local_rank) |
|
input_data = torch.randn(32, 128).cuda() |
|
|
|
zero1_output = zero1_model(input_data) |
|
zero2_output = zero2_model(input_data) |
|
assert torch.equal(zero1_output, zero2_output) |
|
|
|
# zero-dp backward |
|
zero1_optimizer.backward(zero1_output.mean().float(), sync_grad=False) |
|
zero2_optimizer.backward(zero2_output.mean().float(), sync_grad=False) |
|
|
|
for (n, z1p), z2p in zip(zero1_model.named_parameters(), zero2_model.parameters()): |
|
if z2p.grad is not None: |
|
# print(local_rank, n, z1p.shape, torch.max(z2p.grad), torch.max(torch.abs(z1p.grad - z2p.grad))) |
|
assert torch.equal(z1p.grad, z2p.grad) |
|
|
|
zero1_optimizer._sync_grad() |
|
zero2_optimizer._sync_grad() |
|
|
|
# step |
|
zero1_optimizer.step() |
|
zero2_optimizer.step() |
|
|
|
# check updated param |
|
for z1p, z2p in zip(zero1_model.parameters(), zero2_model.parameters()): |
|
assert torch.equal(z1p.data, z2p.data) |
|
|
|
|
|
def exam_zero_1_torch_ddp(): |
|
""" |
|
In this test, two pairs of model and optimizers are created. |
|
1. zero: use sharded optimizer and fp16 parameters |
|
2. torch: use torch DDP and fp32 parameters |
|
|
|
We feed these two sets of models with the same input and check if the |
|
differences in model output and updated parameters are within tolerance. |
|
""" |
|
local_rank = torch.distributed.get_rank() |
|
seed_all(1453) |
|
|
|
# create models |
|
zero_model = MlpModel() |
|
torch_model = copy.deepcopy(zero_model) |
|
|
|
zero_model = zero_model.cuda().half() |
|
torch_model = DDP(torch_model.cuda(), bucket_cap_mb=0) |
|
torch_model = torch_model.cuda() |
|
|
|
# for (n, p), z1p in zip(torch_model.named_parameters(), zero_model.parameters()): |
|
# half_close(p.data, z1p.data) |
|
|
|
# create optimizer |
|
zero_optimizer = torch.optim.SGD(zero_model.parameters(), lr=1) |
|
|
|
# we only test stage 1 here |
|
# in `check_sharded_param_consistency.py`, we will test whether |
|
# level 1 and 2 will produce exactly the same results |
|
zero_optimizer = LowLevelZeroOptimizer(zero_optimizer, |
|
overlap_communication=True, |
|
initial_scale=1, |
|
reduce_bucket_size=262144) |
|
|
|
torch_optimizer = torch.optim.SGD(torch_model.parameters(), lr=1) |
|
|
|
seed_all(1453 + local_rank) |
|
# create |
|
input_data = torch.rand(32, 128).cuda() |
|
|
|
# zero-dp forward |
|
zero_output = zero_model(input_data.half()) |
|
|
|
# torch-ddp forward |
|
torch_output = torch_model(input_data) |
|
half_close(zero_output, torch_output, loose=True) |
|
|
|
# zero-dp backward |
|
zero_optimizer.backward(zero_output.mean().float(), sync_grad=False) |
|
|
|
# torch-ddp backward |
|
torch_output.mean().backward() |
|
|
|
# check grad |
|
for (n, p), z1p in zip(torch_model.named_parameters(), zero_model.parameters()): |
|
half_close(p.grad, z1p.grad, loose=True) |
|
|
|
# zero-dp step |
|
zero_optimizer._sync_grad() |
|
zero_optimizer.step() |
|
|
|
# torch ddp step |
|
torch_optimizer.step() |
|
|
|
# check updated param |
|
for (n, p), z1p in zip(torch_model.named_parameters(), zero_model.parameters()): |
|
# print(n, torch.max(torch.abs(p.data - z1p.data))) |
|
half_close(p.data, z1p.data, loose=True) |
|
|
|
|
|
def run_dist(rank, world_size, port): |
|
colossalai.launch(config=dict(), rank=rank, world_size=world_size, port=port, host='localhost') |
|
|
|
exam_zero_1_torch_ddp() |
|
exam_zero_1_2() |
|
|
|
|
|
@pytest.mark.dist |
|
@rerun_if_address_is_in_use() |
|
def test_zero_1_2(): |
|
spawn(run_dist, 2) |
|
|
|
|
|
if __name__ == '__main__': |
|
test_zero_1_2()
|
|
|