mirror of https://github.com/hpcaitech/ColossalAI
aibig-modeldata-parallelismdeep-learningdistributed-computingfoundation-modelsheterogeneous-traininghpcinferencelarge-scalemodel-parallelismpipeline-parallelism
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
330 lines
12 KiB
330 lines
12 KiB
import pytest |
|
import torch |
|
|
|
from colossalai.core import global_context as gpc |
|
from colossalai.device.device_mesh import DeviceMesh |
|
from colossalai.initialize import launch |
|
from colossalai.logging import disable_existing_loggers |
|
from colossalai.tensor.shape_consistency import CollectiveCommPattern, CommSpec |
|
from colossalai.tensor.sharding_spec import ShardingSpec |
|
from colossalai.tensor.utils import mix_gather_simulator |
|
from colossalai.testing import rerun_if_address_is_in_use, spawn |
|
|
|
|
|
def check_mix_gather_S0S1(device_mesh, rank): |
|
tensor_to_check = torch.arange(64).reshape((8, 8)).cuda() |
|
(f, b) = (0, 1) |
|
f_target_pair = (f, [0]) |
|
b_target_pair = (b, [1]) |
|
gather_dim, logical_process_axes = mix_gather_simulator(f_target_pair, b_target_pair) |
|
tensor_slice = [4, 2] # (4, 2) |
|
rank_slice = 4 |
|
f_start = (rank // rank_slice) * tensor_slice[0] |
|
b_start = (rank % rank_slice) * tensor_slice[1] |
|
tensor_to_comm = tensor_to_check[f_start:f_start + tensor_slice[0], |
|
b_start:b_start + tensor_slice[1]].contiguous().cuda() |
|
|
|
dim_partition_dict = {0: [0], 1: [1]} |
|
|
|
# DistSpec: |
|
# shard_sequence: S0,S1 |
|
# device_mesh_shape: (2, 4) |
|
source_spec = ShardingSpec(device_mesh, tensor_to_check.shape, dim_partition_dict=dim_partition_dict) |
|
|
|
comm_spec = CommSpec(CollectiveCommPattern.MIXGATHER_FWD_SPLIT_BWD, |
|
sharding_spec=source_spec, |
|
gather_dim=gather_dim, |
|
logical_process_axis=logical_process_axes, |
|
forward_only=True, |
|
mix_gather=True) |
|
tensor_to_comm = comm_spec.covert_spec_to_action(tensor_to_comm) |
|
|
|
assert tensor_to_comm.equal(tensor_to_check) |
|
|
|
|
|
def check_two_all_gather_S0S1(device_mesh, rank): |
|
tensor_width = 8 |
|
tensor_to_check = torch.arange(int(tensor_width * tensor_width)).reshape((tensor_width, tensor_width)).cuda() |
|
|
|
dim_partition_dict = {0: [0], 1: [1]} |
|
|
|
tensor_slice = [tensor_width // 2, tensor_width // 4] # (4, 2) |
|
rank_slice = 4 |
|
f_start = (rank // rank_slice) * tensor_slice[0] |
|
b_start = (rank % rank_slice) * tensor_slice[1] |
|
tensor_to_comm = tensor_to_check[f_start:f_start + tensor_slice[0], |
|
b_start:b_start + tensor_slice[1]].contiguous().cuda() |
|
|
|
# DistSpec: |
|
# shard_sequence: S0,S1 |
|
# device_mesh_shape: (2, 4) |
|
sharding_spec = ShardingSpec(device_mesh, tensor_to_check.shape, dim_partition_dict=dim_partition_dict) |
|
|
|
# CommSpec:(comm_pattern:allgather, gather_dim:0, logical_process_axis:0) |
|
comm_spec = CommSpec(CollectiveCommPattern.GATHER_FWD_SPLIT_BWD, |
|
sharding_spec, |
|
gather_dim=0, |
|
logical_process_axis=0) |
|
|
|
tensor_to_comm = comm_spec.covert_spec_to_action(tensor_to_comm) |
|
|
|
dim_partition_dict = {1: [1]} |
|
# DistSpec: |
|
# shard_sequence: R,S1 |
|
# device_mesh_shape: (2, 4) |
|
sharding_spec = ShardingSpec(device_mesh, tensor_to_check.shape, dim_partition_dict=dim_partition_dict) |
|
|
|
# CommSpec:(comm_pattern:allgather, gather_dim:1, logical_process_axis:1) |
|
comm_spec = CommSpec(CollectiveCommPattern.GATHER_FWD_SPLIT_BWD, |
|
sharding_spec, |
|
gather_dim=1, |
|
logical_process_axis=1) |
|
|
|
tensor_to_comm = comm_spec.covert_spec_to_action(tensor_to_comm) |
|
|
|
assert tensor_to_comm.equal(tensor_to_check) |
|
|
|
|
|
def check_mix_gather_S1S0(device_mesh, rank): |
|
tensor_to_check = torch.arange(64).reshape((8, 8)).cuda() |
|
(f, b) = (0, 1) |
|
f_target_pair = (f, [1]) |
|
b_target_pair = (b, [0]) |
|
gather_dim, logical_process_axes = mix_gather_simulator(f_target_pair, b_target_pair) |
|
tensor_slice = [2, 4] |
|
rank_slice = 4 |
|
f_start = (rank % rank_slice) * tensor_slice[0] |
|
b_start = (rank // rank_slice) * tensor_slice[1] |
|
tensor_to_comm = tensor_to_check[f_start:f_start + tensor_slice[0], |
|
b_start:b_start + tensor_slice[1]].contiguous().cuda() |
|
|
|
dim_partition_dict = {0: [1], 1: [0]} |
|
|
|
# DistSpec: |
|
# shard_sequence: S1,S0 |
|
# device_mesh_shape: (2, 4) |
|
source_spec = ShardingSpec(device_mesh, tensor_to_check.shape, dim_partition_dict=dim_partition_dict) |
|
|
|
comm_spec = CommSpec(CollectiveCommPattern.MIXGATHER_FWD_SPLIT_BWD, |
|
sharding_spec=source_spec, |
|
gather_dim=gather_dim, |
|
logical_process_axis=logical_process_axes, |
|
forward_only=True, |
|
mix_gather=True) |
|
tensor_to_comm = comm_spec.covert_spec_to_action(tensor_to_comm) |
|
|
|
assert tensor_to_comm.equal(tensor_to_check) |
|
|
|
|
|
def check_two_all_gather_S1S0(device_mesh, rank): |
|
tensor_width = 8 |
|
tensor_to_check = torch.arange(int(tensor_width * tensor_width)).reshape((tensor_width, tensor_width)).cuda() |
|
|
|
tensor_slice = [tensor_width // 4, tensor_width // 2] # (4, 2) |
|
rank_slice = 4 |
|
f_start = (rank % rank_slice) * tensor_slice[0] |
|
b_start = (rank // rank_slice) * tensor_slice[1] |
|
tensor_to_comm = tensor_to_check[f_start:f_start + tensor_slice[0], |
|
b_start:b_start + tensor_slice[1]].contiguous().cuda() |
|
|
|
dim_partition_dict = {0: [1], 1: [0]} |
|
|
|
# DistSpec: |
|
# shard_sequence: S1,S0 |
|
# device_mesh_shape: (2, 4) |
|
sharding_spec = ShardingSpec(device_mesh, tensor_to_check.shape, dim_partition_dict=dim_partition_dict) |
|
|
|
# CommSpec:(comm_pattern:allgather, gather_dim:0, logical_process_axis:1) |
|
comm_spec = CommSpec(CollectiveCommPattern.GATHER_FWD_SPLIT_BWD, |
|
sharding_spec, |
|
gather_dim=0, |
|
logical_process_axis=1) |
|
|
|
tensor_to_comm = comm_spec.covert_spec_to_action(tensor_to_comm) |
|
|
|
dim_partition_dict = {1: [0]} |
|
# DistSpec: |
|
# shard_sequence: R,S0 |
|
# device_mesh_shape: (2, 4) |
|
sharding_spec = ShardingSpec(device_mesh, tensor_to_check.shape, dim_partition_dict=dim_partition_dict) |
|
|
|
# CommSpec:(comm_pattern:allgather, gather_dim:1, logical_process_axis:0) |
|
comm_spec = CommSpec(CollectiveCommPattern.GATHER_FWD_SPLIT_BWD, |
|
sharding_spec, |
|
gather_dim=1, |
|
logical_process_axis=0) |
|
|
|
tensor_to_comm = comm_spec.covert_spec_to_action(tensor_to_comm) |
|
|
|
assert tensor_to_comm.equal(tensor_to_check) |
|
|
|
|
|
def check_mix_gather_S01R(device_mesh, rank): |
|
tensor_to_check = torch.arange(64).reshape((8, 8)).cuda() |
|
(f, b) = (0, 1) |
|
f_target_pair = (f, [0, 1]) |
|
b_target_pair = (b, []) |
|
gather_dim, logical_process_axes = mix_gather_simulator(f_target_pair, b_target_pair) |
|
tensor_to_comm = tensor_to_check[rank:rank + 1, :].contiguous().cuda() |
|
|
|
dim_partition_dict = {0: [0, 1]} |
|
# DistSpec: |
|
# shard_sequence: S01,R |
|
# device_mesh_shape: (2, 4) |
|
source_spec = ShardingSpec(device_mesh, tensor_to_check.shape, dim_partition_dict=dim_partition_dict) |
|
|
|
comm_spec = CommSpec(CollectiveCommPattern.MIXGATHER_FWD_SPLIT_BWD, |
|
sharding_spec=source_spec, |
|
gather_dim=gather_dim, |
|
logical_process_axis=logical_process_axes, |
|
forward_only=True, |
|
mix_gather=True) |
|
tensor_to_comm = comm_spec.covert_spec_to_action(tensor_to_comm) |
|
|
|
assert tensor_to_comm.equal(tensor_to_check) |
|
|
|
|
|
def check_two_all_gather_S01R(device_mesh, rank): |
|
tensor_width = 8 |
|
tensor_to_check = torch.arange(int(tensor_width * tensor_width)).reshape((tensor_width, tensor_width)).cuda() |
|
|
|
rank_stride = tensor_width // 8 |
|
tensor_to_comm = tensor_to_check[rank:rank + rank_stride, :].contiguous().cuda() |
|
|
|
dim_partition_dict = {0: [0, 1]} |
|
|
|
# DistSpec: |
|
# shard_sequence: S01, R |
|
# device_mesh_shape: (2, 4) |
|
sharding_spec = ShardingSpec(device_mesh, tensor_to_check.shape, dim_partition_dict=dim_partition_dict) |
|
|
|
# CommSpec:(comm_pattern:allgather, gather_dim:0, logical_process_axis:0) |
|
comm_spec = CommSpec(CollectiveCommPattern.GATHER_FWD_SPLIT_BWD, |
|
sharding_spec, |
|
gather_dim=0, |
|
logical_process_axis=1) |
|
|
|
tensor_to_comm = comm_spec.covert_spec_to_action(tensor_to_comm) |
|
|
|
dim_partition_dict = {0: [0]} |
|
|
|
# DistSpec: |
|
# shard_sequence: S1, R |
|
# device_mesh_shape: (2, 4) |
|
sharding_spec = ShardingSpec(device_mesh, tensor_to_check.shape, dim_partition_dict=dim_partition_dict) |
|
|
|
# CommSpec:(comm_pattern:allgather, gather_dim:0, logical_process_axis:1) |
|
comm_spec = CommSpec(CollectiveCommPattern.GATHER_FWD_SPLIT_BWD, |
|
sharding_spec, |
|
gather_dim=0, |
|
logical_process_axis=0) |
|
|
|
tensor_to_comm = comm_spec.covert_spec_to_action(tensor_to_comm) |
|
|
|
assert tensor_to_comm.equal(tensor_to_check) |
|
|
|
|
|
def check_mix_gather_RS01(device_mesh, rank): |
|
tensor_to_check = torch.arange(64).reshape((8, 8)).cuda() |
|
|
|
(f, b) = (0, 1) |
|
f_target_pair = (f, []) |
|
b_target_pair = (b, [0, 1]) |
|
gather_dim, logical_process_axes = mix_gather_simulator(f_target_pair, b_target_pair) |
|
tensor_to_comm = tensor_to_check[:, rank:rank + 1].contiguous().cuda() |
|
|
|
dim_partition_dict = {1: [0, 1]} |
|
# DistSpec: |
|
# shard_sequence: R, S01 |
|
# device_mesh_shape: (2, 4) |
|
source_spec = ShardingSpec(device_mesh, tensor_to_check.shape, dim_partition_dict=dim_partition_dict) |
|
|
|
comm_spec = CommSpec(CollectiveCommPattern.MIXGATHER_FWD_SPLIT_BWD, |
|
sharding_spec=source_spec, |
|
gather_dim=gather_dim, |
|
logical_process_axis=logical_process_axes, |
|
forward_only=True, |
|
mix_gather=True) |
|
tensor_to_comm = comm_spec.covert_spec_to_action(tensor_to_comm) |
|
|
|
assert tensor_to_comm.equal(tensor_to_check) |
|
|
|
|
|
def check_two_all_gather_RS01(device_mesh, rank): |
|
tensor_width = 8 |
|
tensor_to_check = torch.arange(int(tensor_width * tensor_width)).reshape((tensor_width, tensor_width)).cuda() |
|
|
|
rank_stride = tensor_width // 8 |
|
tensor_to_comm = tensor_to_check[:, rank:rank + rank_stride].contiguous().cuda() |
|
|
|
dim_partition_dict = {1: [0, 1]} |
|
|
|
# DistSpec: |
|
# shard_sequence: R, S01 |
|
# device_mesh_shape: (2, 4) |
|
sharding_spec = ShardingSpec(device_mesh, tensor_to_check.shape, dim_partition_dict=dim_partition_dict) |
|
|
|
# CommSpec:(comm_pattern:allgather, gather_dim:1, logical_process_axis:0) |
|
comm_spec = CommSpec(CollectiveCommPattern.GATHER_FWD_SPLIT_BWD, |
|
sharding_spec, |
|
gather_dim=1, |
|
logical_process_axis=1) |
|
|
|
tensor_to_comm = comm_spec.covert_spec_to_action(tensor_to_comm) |
|
|
|
dim_partition_dict = {1: [0]} |
|
|
|
# DistSpec: |
|
# shard_sequence: R, S1 |
|
# device_mesh_shape: (2, 4) |
|
sharding_spec = ShardingSpec(device_mesh, tensor_to_check.shape, dim_partition_dict=dim_partition_dict) |
|
|
|
# CommSpec:(comm_pattern:allgather, gather_dim:1, logical_process_axis:1) |
|
comm_spec = CommSpec(CollectiveCommPattern.GATHER_FWD_SPLIT_BWD, |
|
sharding_spec, |
|
gather_dim=1, |
|
logical_process_axis=0) |
|
|
|
tensor_to_comm = comm_spec.covert_spec_to_action(tensor_to_comm) |
|
|
|
assert tensor_to_comm.equal(tensor_to_check) |
|
|
|
|
|
def check_comm(rank, world_size, port): |
|
disable_existing_loggers() |
|
launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') |
|
|
|
physical_mesh_id = torch.arange(0, 8) |
|
assert rank == gpc.get_global_rank() |
|
|
|
mesh_shape = (2, 4) |
|
# [[0, 1, 2, 3], |
|
# [4, 5, 6, 7]] |
|
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape, init_process_group=True, need_flatten=True) |
|
|
|
check_mix_gather_S0S1(device_mesh, rank) |
|
|
|
check_two_all_gather_S0S1(device_mesh, rank) |
|
|
|
check_mix_gather_S1S0(device_mesh, rank) |
|
|
|
check_two_all_gather_S1S0(device_mesh, rank) |
|
|
|
check_mix_gather_S01R(device_mesh, rank) |
|
|
|
check_two_all_gather_S01R(device_mesh, rank) |
|
|
|
check_mix_gather_RS01(device_mesh, rank) |
|
|
|
check_two_all_gather_RS01(device_mesh, rank) |
|
|
|
|
|
@pytest.mark.skip(reason="Skip because the check functions assume 8 GPUS but CI only have 4 GPUs") |
|
@rerun_if_address_is_in_use() |
|
def test_mix_gather(): |
|
world_size = 8 |
|
spawn(check_comm, world_size) |
|
|
|
|
|
if __name__ == '__main__': |
|
test_mix_gather()
|
|
|