Making large AI models cheaper, faster and more accessible
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

64 lines
2.3 KiB

import pytest
import torch
import colossalai
from colossalai.tensor import (
ColoParameter,
ColoTensorSpec,
ComputePattern,
ComputeSpec,
ProcessGroup,
ReplicaSpec,
ShardSpec,
)
from colossalai.testing import rerun_if_address_is_in_use, spawn
from colossalai.utils.cuda import get_current_device
from colossalai.zero import ColoInitContext
from tests.components_to_test.registry import non_distributed_component_funcs
from tests.test_tensor.common_utils import set_seed
def run_colo_init_context(rank: int, world_size: int, port: int):
colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
# make sure seed of each process is the same, so the params are consistent among processes and the params are exactly replicated.
set_seed(42)
get_components_func = non_distributed_component_funcs.get_callable('gpt2')
model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func()
# keep parameters replicated during init
with ColoInitContext(device=get_current_device()):
model1 = model_builder()
# shard the parameters during init
set_seed(42)
shard_spec = ReplicaSpec()
# If using ShardSpec, the assertations will failed.
# But it is not a bug, the initialized values are not consist with the original one.
# shard_spec = ShardSpec(dims=[0], num_partitions=[world_size])
default_pg = ProcessGroup(tp_degree=world_size)
with ColoInitContext(device=get_current_device(), default_pg=default_pg, default_dist_spec=shard_spec):
model2 = model_builder()
# reshard both models
new_shard = ShardSpec(dims=[-1], num_partitions=[world_size])
for p1, p2 in zip(model1.parameters(), model2.parameters()):
p1: ColoParameter = p1
p1.set_process_group(ProcessGroup(tp_degree=world_size))
p1.set_dist_spec(new_shard)
p2.set_dist_spec(new_shard)
for p1, p2 in zip(model1.parameters(), model2.parameters()):
assert (torch.allclose(p1, p2))
@pytest.mark.dist
@pytest.mark.parametrize('world_size', [1, 4])
@rerun_if_address_is_in_use()
def test_colo_init_context(world_size):
spawn(run_colo_init_context, world_size)
if __name__ == '__main__':
test_colo_init_context(2)