mirror of https://github.com/hpcaitech/ColossalAI
aibig-modeldata-parallelismdeep-learningdistributed-computingfoundation-modelsheterogeneous-traininghpcinferencelarge-scalemodel-parallelismpipeline-parallelism
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
95 lines
3.1 KiB
95 lines
3.1 KiB
import os |
|
from pathlib import Path |
|
|
|
import pytest |
|
import torch |
|
import torch.nn as nn |
|
from torch.optim import Adam |
|
from torchvision import transforms |
|
from torchvision.datasets import CIFAR10 |
|
from torchvision.models import resnet18 |
|
|
|
import colossalai |
|
from colossalai.core import global_context as gpc |
|
from colossalai.logging import get_dist_logger |
|
from colossalai.testing import rerun_if_address_is_in_use, spawn |
|
from colossalai.utils import get_dataloader |
|
|
|
# Config |
|
BATCH_SIZE = 2 |
|
NUM_CLASSES = 10 |
|
|
|
CONFIG = dict(parallel=dict(pipeline=dict(size=1), tensor=dict(size=1, mode=None)), |
|
clip_grad_norm=1.0, |
|
gradient_accumulation=4) |
|
|
|
|
|
def run_no_pipeline(rank, world_size, port): |
|
|
|
# init dist env |
|
colossalai.launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') |
|
|
|
# build model |
|
model = resnet18(num_classes=10) |
|
|
|
# build dataloaders |
|
train_dataset = CIFAR10(root=Path(os.environ['DATA']), |
|
download=True, |
|
transform=transforms.Compose([ |
|
transforms.ToTensor(), |
|
transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)) |
|
])) |
|
train_dataloader = get_dataloader(dataset=train_dataset, |
|
shuffle=True, |
|
batch_size=BATCH_SIZE, |
|
pin_memory=True, |
|
drop_last=True) |
|
|
|
# build optimizer |
|
optimizer = Adam(model.parameters(), lr=0.001) |
|
criterion = nn.CrossEntropyLoss() |
|
|
|
engine, train_dataloader, *args = colossalai.initialize(model=model, |
|
optimizer=optimizer, |
|
criterion=criterion, |
|
train_dataloader=train_dataloader) |
|
logger = get_dist_logger() |
|
rank = torch.distributed.get_rank() |
|
param_track = [] |
|
grad_track = [] |
|
next(model.parameters()).retain_grad() |
|
|
|
engine.train() |
|
step = 0 |
|
for img, label in train_dataloader: |
|
engine.zero_grad() |
|
img = img.cuda() |
|
label = label.cuda() |
|
output = engine(img) |
|
loss = engine.criterion(output, label) |
|
engine.backward(loss) |
|
engine.step() |
|
|
|
# check |
|
param_track.append(next(model.parameters())[0].clone()) |
|
grad_track.append(next(model.parameters()).grad[0].clone()) |
|
step += 1 |
|
if step == CONFIG['gradient_accumulation']: |
|
break |
|
|
|
assert not torch.all(grad_track[0] == grad_track[-1]), 'grad should be different in different iterations' |
|
assert torch.all(param_track[0] == param_track[1]) and not torch.all(param_track[0] == param_track[-1]), \ |
|
'param should be the same in the first few iterations and only changed in the last iteration' |
|
|
|
gpc.destroy() |
|
torch.cuda.empty_cache() |
|
|
|
|
|
@pytest.mark.dist |
|
@rerun_if_address_is_in_use() |
|
def test_engine(): |
|
spawn(run_no_pipeline, 4) |
|
|
|
|
|
if __name__ == '__main__': |
|
test_engine()
|
|
|