ColossalAI/colossalai/shardformer/policies/t5.py

486 lines
19 KiB
Python

import warnings
from functools import partial
from typing import Callable, Dict, List, Tuple
import numpy as np
from torch import Tensor, nn
from colossalai.shardformer.layer import (
DropoutForParallelInput,
Embedding1D,
FusedRMSNorm,
Linear1D_Col,
Linear1D_Row,
RMSNorm,
VocabParallelEmbedding1D,
)
from colossalai.shardformer.policies.base_policy import ModulePolicyDescription
from ..modeling.jit import get_jit_fused_dropout_add_func
from ..modeling.t5 import (
T5PipelineForwards,
get_jit_fused_T5_layer_ff_forward,
get_t5_flash_attention_forward,
get_T5_layer_cross_attention_forward,
get_T5_layer_self_attention_forward,
)
from .base_policy import ModulePolicyDescription, Policy, SubModuleReplacementDescription
__all__ = ["distribute_t5_layers", "T5ModelPolicy", "T5ForConditionalGenerationPolicy", "T5EncoderPolicy"]
class T5BasePolicy(Policy):
def config_sanity_check(self):
pass
def preprocess(self):
# reshape the embedding layer
r"""
Reshape the Embedding layer to make the embedding dimension divisible by world_size
"""
if self.shard_config.enable_tensor_parallelism:
vocab_size = self.model.config.vocab_size
world_size = self.shard_config.tensor_parallel_size
if vocab_size % world_size != 0:
new_vocab_size = vocab_size + world_size - vocab_size % world_size
self.model.resize_token_embeddings(new_vocab_size)
return self.model
def module_policy(self):
from transformers.models.t5.modeling_t5 import (
T5Attention,
T5DenseActDense,
T5DenseGatedActDense,
T5LayerCrossAttention,
T5LayerFF,
T5LayerSelfAttention,
T5Stack,
)
policy = {}
if self.shard_config.enable_fused_normalization:
norm_cls = FusedRMSNorm
else:
norm_cls = RMSNorm
if self.shard_config.enable_sequence_parallelism:
self.shard_config.enable_sequence_parallelism = False
warnings.warn("T5 dosen't support sequence parallelism now, will ignore the sequence parallelism flag.")
if self.shard_config.enable_tensor_parallelism:
policy[T5Stack] = ModulePolicyDescription(
sub_module_replacement=[
SubModuleReplacementDescription(
suffix="dropout",
target_module=DropoutForParallelInput,
),
SubModuleReplacementDescription(
suffix="embed_tokens",
target_module=VocabParallelEmbedding1D,
),
]
)
policy[T5LayerSelfAttention] = ModulePolicyDescription(
sub_module_replacement=[
SubModuleReplacementDescription(
suffix="dropout",
target_module=DropoutForParallelInput,
),
]
)
policy[T5LayerCrossAttention] = ModulePolicyDescription(
sub_module_replacement=[
SubModuleReplacementDescription(
suffix="dropout",
target_module=DropoutForParallelInput,
)
]
)
policy[T5Attention] = ModulePolicyDescription(
attribute_replacement={
"d_model": self.model.config.d_model // self.shard_config.tensor_parallel_size,
"n_heads": self.model.config.num_heads // self.shard_config.tensor_parallel_size,
"inner_dim": self.model.config.num_heads
* self.model.config.d_kv
// self.shard_config.tensor_parallel_size,
},
sub_module_replacement=[
SubModuleReplacementDescription(
suffix="q",
target_module=Linear1D_Col,
),
SubModuleReplacementDescription(
suffix="k",
target_module=Linear1D_Col,
),
SubModuleReplacementDescription(
suffix="v",
target_module=Linear1D_Col,
),
SubModuleReplacementDescription(
suffix="o",
target_module=Linear1D_Row,
),
SubModuleReplacementDescription(
suffix="relative_attention_bias",
target_module=Embedding1D,
kwargs=dict(gather_output=False),
ignore_if_not_exist=True,
),
],
)
policy[T5LayerFF] = ModulePolicyDescription(
sub_module_replacement=[
SubModuleReplacementDescription(
suffix="dropout",
target_module=DropoutForParallelInput,
),
]
)
policy[T5DenseGatedActDense] = ModulePolicyDescription(
sub_module_replacement=[
SubModuleReplacementDescription(
suffix="wi_0 ",
target_module=Linear1D_Col,
),
SubModuleReplacementDescription(
suffix="wi_1",
target_module=Linear1D_Row,
),
SubModuleReplacementDescription(
suffix="wo", target_module=Linear1D_Col, kwargs=dict(gather_output=True)
),
SubModuleReplacementDescription(
suffix="dropout",
target_module=DropoutForParallelInput,
),
]
)
policy[T5DenseActDense] = ModulePolicyDescription(
sub_module_replacement=[
SubModuleReplacementDescription(
suffix="wi",
target_module=Linear1D_Col,
),
SubModuleReplacementDescription(
suffix="wo",
target_module=Linear1D_Row,
),
SubModuleReplacementDescription(
suffix="dropout",
target_module=DropoutForParallelInput,
),
]
)
# optimization configuration
self.append_or_create_submodule_replacement(
description=SubModuleReplacementDescription(
suffix="layer_norm",
target_module=norm_cls,
),
policy=policy,
target_key=T5LayerFF,
)
self.append_or_create_submodule_replacement(
description=SubModuleReplacementDescription(suffix="layer_norm", target_module=norm_cls),
policy=policy,
target_key=T5LayerSelfAttention,
)
self.append_or_create_submodule_replacement(
description=SubModuleReplacementDescription(suffix="layer_norm", target_module=norm_cls),
policy=policy,
target_key=T5LayerCrossAttention,
)
self.append_or_create_submodule_replacement(
description=SubModuleReplacementDescription(suffix="final_layer_norm", target_module=norm_cls),
policy=policy,
target_key=T5Stack,
)
# use flash attention
if self.shard_config.enable_flash_attention:
self.append_or_create_method_replacement(
description={
"forward": get_t5_flash_attention_forward(),
},
policy=policy,
target_key=T5Attention,
)
# use jit operator
if self.shard_config.enable_jit_fused:
self.append_or_create_method_replacement(
description={
"forward": get_jit_fused_T5_layer_ff_forward(),
"dropout_add": get_jit_fused_dropout_add_func(),
},
policy=policy,
target_key=T5LayerFF,
)
self.append_or_create_method_replacement(
description={
"forward": get_T5_layer_self_attention_forward(),
"dropout_add": get_jit_fused_dropout_add_func(),
},
policy=policy,
target_key=T5LayerSelfAttention,
)
self.append_or_create_method_replacement(
description={
"forward": get_T5_layer_cross_attention_forward(),
"dropout_add": get_jit_fused_dropout_add_func(),
},
policy=policy,
target_key=T5LayerCrossAttention,
)
return policy
def postprocess(self):
return self.model
@staticmethod
def distribute_t5_layers(
num_encoder_layers: int, num_decoder_layers: int, num_stages: int
) -> Tuple[List[int], int]:
"""
Distribute t5 layers into stages when pipeline parallel is used.
Return the layer distribution as a list and the starting stage of decoder.
If decoder doesn't exist, returned decoder starting stage is set to num_encoder_layers.
"""
# number of encoder layers must be a positive integer
if num_encoder_layers <= 0:
raise ValueError("The number of encoder layers for T5 must be a positive integer.")
# number of layers should be large enough to fill in every stage
if num_encoder_layers + num_decoder_layers < num_stages:
raise ValueError("The total number of layers can't be smaller than number of stages.")
# in the case of T5EncoderModel, set decoder starting stage to num_stages since it doesn't exist
if num_decoder_layers == 0:
return Policy.distribute_layers(num_encoder_layers, num_stages), num_stages
# the number of stages distributed between encoder and decoder is optmized in this way:
# num_encoder_stages = argmin(abs(num_encoder_layers / encoder_stages - num_decoder_layers / decoder_stages))
# s.t. num_encoder_stages + num_decoder_stages = num_stages, num_encoder_stages >= 1, num_decoder_stages >= 1
def objective(num_encoder_stages):
return abs(num_encoder_layers / num_encoder_stages - num_decoder_layers / (num_stages - num_encoder_stages))
num_encoder_stages = np.argmin([objective(i) for i in range(1, num_stages)]) + 1
num_decoder_stages = num_stages - num_encoder_stages
encoder_distribution = Policy.distribute_layers(num_encoder_layers, num_encoder_stages)
decoder_distribution = Policy.distribute_layers(num_decoder_layers, num_decoder_stages)
return encoder_distribution + decoder_distribution, num_encoder_stages
@staticmethod
def get_t5_stage_index(
layers_per_stage: List[int], stage: int, decoder_starting_stage: int
) -> Tuple[bool, int, int]:
"""
Input the distribution of layers among stages, the current stage and the first stage of decoder.
Return the starting/ending idx of layers in encoder/decoder
"""
if stage < decoder_starting_stage:
return Policy.get_stage_index(layers_per_stage[:decoder_starting_stage], stage)
else:
return Policy.get_stage_index(layers_per_stage[decoder_starting_stage:], stage - decoder_starting_stage)
def get_held_layers(self) -> List[nn.Module]:
"""Get pipeline layers for current stage."""
assert self.pipeline_stage_manager is not None
stage_manager = self.pipeline_stage_manager
model = self.model
encoder = self.model.encoder
decoder = getattr(self.model, "decoder", None)
num_encoder_layers = len(encoder.block)
num_decoder_layers = len(decoder.block) if decoder else 0
held_layers = []
layers_per_stage, decoder_starting_stage = T5BasePolicy.distribute_t5_layers(
num_encoder_layers, num_decoder_layers, stage_manager.num_stages
)
start_idx, end_idx = T5BasePolicy.get_t5_stage_index(
layers_per_stage, stage_manager.stage, decoder_starting_stage
)
if stage_manager.stage < decoder_starting_stage:
# current stage is in t5's encoder
if stage_manager.is_first_stage():
held_layers.append(model.shared)
held_layers.append(encoder.embed_tokens)
held_layers.append(encoder.dropout)
if stage_manager.stage == decoder_starting_stage - 1:
held_layers.append(encoder.final_layer_norm)
held_layers.append(encoder.dropout)
held_layers.extend(encoder.block[start_idx:end_idx])
else:
# current stage is in t5's decoder
if stage_manager.stage == decoder_starting_stage:
held_layers.append(decoder.embed_tokens)
held_layers.append(decoder.dropout)
if stage_manager.is_last_stage():
held_layers.append(decoder.final_layer_norm)
held_layers.append(decoder.dropout)
held_layers.extend(decoder.block[start_idx:end_idx])
return held_layers
def set_pipeline_forward(self, model_cls: nn.Module, new_forward: Callable, policy: Dict) -> None:
"""If under pipeline parallel setting, replacing the original forward method of huggingface
to customized forward method, and add this changing to policy."""
if not self.pipeline_stage_manager:
raise ValueError("set_pipeline_forward method can only be called when pipeline parallel is enabled.")
stage_manager = self.pipeline_stage_manager
encoder = self.model.encoder
decoder = getattr(self.model, "decoder", None)
num_encoder_layers = len(encoder.block)
num_decoder_layers = len(decoder.block) if decoder else 0
layers_per_stage, decoder_starting_stage = T5BasePolicy.distribute_t5_layers(
num_encoder_layers, num_decoder_layers, stage_manager.num_stages
)
stage_index = T5BasePolicy.get_t5_stage_index(layers_per_stage, stage_manager.stage, decoder_starting_stage)
method_replacement = {
"forward": partial(
new_forward,
stage_manager=stage_manager,
stage_index=stage_index,
decoder_starting_stage=decoder_starting_stage,
)
}
self.append_or_create_method_replacement(description=method_replacement, policy=policy, target_key=model_cls)
class T5ModelPolicy(T5BasePolicy):
def module_policy(self):
from transformers import T5Model
policy = super().module_policy()
if self.shard_config.enable_tensor_parallelism:
self.append_or_create_submodule_replacement(
description=SubModuleReplacementDescription(
suffix="shared",
target_module=VocabParallelEmbedding1D,
),
policy=policy,
target_key=T5Model,
)
if self.pipeline_stage_manager is not None:
self.set_pipeline_forward(model_cls=T5Model, new_forward=T5PipelineForwards.t5_model_forward, policy=policy)
return policy
def get_held_layers(self) -> List[nn.Module]:
return super().get_held_layers()
def get_shared_params(self) -> List[Dict[int, Tensor]]:
module = self.model
stage_manager = self.pipeline_stage_manager
if stage_manager is not None and stage_manager.num_stages > 1:
_, decoder_starting_stage = T5BasePolicy.distribute_t5_layers(
len(module.encoder.block), len(module.decoder.block), stage_manager.num_stages
)
if id(module.decoder.embed_tokens.weight) == id(module.shared.weight):
return [{0: module.shared.weight, decoder_starting_stage: module.decoder.embed_tokens.weight}]
return []
class T5ForConditionalGenerationPolicy(T5BasePolicy):
def module_policy(self):
from transformers import T5ForConditionalGeneration
policy = super().module_policy()
if self.shard_config.enable_tensor_parallelism:
self.append_or_create_submodule_replacement(
description=[
SubModuleReplacementDescription(
suffix="shared",
target_module=VocabParallelEmbedding1D,
),
SubModuleReplacementDescription(
suffix="lm_head", target_module=Linear1D_Col, kwargs=dict(gather_output=True)
),
],
policy=policy,
target_key=T5ForConditionalGeneration,
)
if self.pipeline_stage_manager is not None:
self.set_pipeline_forward(
model_cls=T5ForConditionalGeneration,
new_forward=T5PipelineForwards.t5_for_conditional_generation_forward,
policy=policy,
)
return policy
def get_held_layers(self) -> List[nn.Module]:
held_layers = super().get_held_layers()
if self.pipeline_stage_manager.is_last_stage():
held_layers.append(self.model.lm_head)
return held_layers
def get_shared_params(self) -> List[Dict[int, Tensor]]:
module = self.model
stage_manager = self.pipeline_stage_manager
if stage_manager is not None and stage_manager.num_stages > 1:
_, decoder_starting_stage = T5BasePolicy.distribute_t5_layers(
len(module.encoder.block), len(module.decoder.block), stage_manager.num_stages
)
shared_params = []
shared_embedding = {}
if id(module.decoder.embed_tokens.weight) == id(module.shared.weight):
shared_embedding[0] = module.shared.weight
shared_embedding[decoder_starting_stage] = module.decoder.embed_tokens.weight
if id(module.lm_head.weight) == id(module.shared.weight):
shared_embedding[0] = module.shared.weight
shared_embedding[stage_manager.num_stages - 1] = module.lm_head.weight
if len(shared_embedding) > 0:
shared_params.append(shared_embedding)
return shared_params
return []
class T5EncoderPolicy(T5BasePolicy):
def module_policy(self):
from transformers import T5EncoderModel
policy = super().module_policy()
if self.shard_config.enable_tensor_parallelism:
self.append_or_create_submodule_replacement(
description=SubModuleReplacementDescription(
suffix="shared",
target_module=VocabParallelEmbedding1D,
),
policy=policy,
target_key=T5EncoderModel,
)
if self.pipeline_stage_manager is not None:
self.set_pipeline_forward(
model_cls=T5EncoderModel, new_forward=T5PipelineForwards.t5_encoder_model_forward, policy=policy
)
return policy
def get_held_layers(self) -> List[nn.Module]:
return super().get_held_layers()
def get_shared_params(self) -> List[Dict[int, Tensor]]:
return []