ColossalAI/colossalai/pipeline/schedule/interleaved_pp.py

383 lines
17 KiB
Python

from functools import partial
from typing import Any, Callable, Iterable, List, Optional, Union
import torch
import torch.cuda
from torch.nn import Module, ModuleList
from torch.utils._pytree import tree_map
from colossalai.interface import OptimizerWrapper
from colossalai.pipeline.p2p import PipelineP2PCommunication
from colossalai.pipeline.stage_manager import PipelineStageManager
from colossalai.utils.device import get_current_device
from ._utils import detach, get_batch_size, get_micro_batch, merge_batch, model_forward, retain_grad, to_device
from .base import PipelineSchedule
class InterleavedSchedule(PipelineSchedule):
def __init__(
self,
stage_manager: PipelineStageManager,
num_model_chunks: int,
num_microbatch: Optional[int] = None,
microbatch_size: Optional[int] = None,
) -> None:
super().__init__(stage_manager)
assert (
num_microbatch is not None or microbatch_size is not None
), "Either num_microbatch or microbatch_size should be provided"
self.comm = PipelineP2PCommunication(stage_manager)
self.num_microbatch = num_microbatch
self.microbatch_size = microbatch_size
self.num_model_chunks = num_model_chunks
self.batch: Any
self.batch_size: int
self.microbatch_offset: List[int]
def load_batch(self, data_iter: Iterable, device: Optional[torch.device] = None) -> None:
"""Load a batch from data iterator.
Args:
data_iter (Iterable): Data iterator.
device (Optional[torch.device], optional): Target device. Defaults to None.
"""
batch = next(data_iter)
if device is not None:
batch = tree_map(partial(to_device, device=device), batch)
self.batch = batch
self.batch_size = get_batch_size(batch)
self.microbatch_offset = [0 for _ in range(self.num_model_chunks)]
if self.num_microbatch is not None:
assert self.batch_size % self.num_microbatch == 0, "Batch size should divided by the number of microbatch"
self.microbatch_size = self.batch_size // self.num_microbatch
elif self.microbatch_size is not None:
assert self.batch_size % self.microbatch_size == 0, "Batch size should divided by the microbatch size"
self.num_microbatch = self.batch_size // self.microbatch_size
else:
raise ValueError("Either num_microbatch or microbatch_size should be provided")
assert (
self.num_microbatch % self.num_model_chunks == 0
), "Number of microbatch should be an integer multiple of number of model chunks"
assert (
self.num_microbatch % self.stage_manager.num_stages == 0
), "Number of microbatch should be an integer multiple of number of pipeline parallel devices"
def load_micro_batch(self, model_chunk_id: int) -> Any:
"""Load a micro batch from the current batch.
Args:
microbatch_id (int): the current model chunk idx.
Returns:
Any: Micro batch.
"""
micro_batch = get_micro_batch(self.batch, self.microbatch_offset[model_chunk_id], self.microbatch_size)
self.microbatch_offset[model_chunk_id] += self.microbatch_size
return tree_map(partial(to_device, device=get_current_device()), micro_batch)
def get_model_chunk_id(self, microbatch_id: int, is_forward: bool) -> int:
"""Helper method to get the model chunk ID given the iteration number.
Args:
microbatch_id (int): the current microbatch idx
forward (bool): if is the forward process
Returns:
int: The model chunk idx of the input microbatch_id
"""
microbatch_id_in_group = (microbatch_id) % (self.stage_manager.num_stages * self.num_model_chunks)
model_chunk_id = microbatch_id_in_group // self.stage_manager.num_stages
if not is_forward:
model_chunk_id = self.num_model_chunks - model_chunk_id - 1
return model_chunk_id
def recv_forward(self, model_chunk_id: int, prev_rank: int = None) -> Any:
"""Copy the forward output from the previous stage in pipeline as the input tensor of this stage.
For interleaved 1F1B.
Args:
model_chunk_id (int): The current model chunk idx.
prev_rank (int, optional): The rank of the source of the tensor.
Returns:
Any: The input tensor or input tensor list.
"""
if self.stage_manager.is_first_stage(model_chunk_id):
input_tensor = None
else:
input_tensor = self.comm.recv_forward(prev_rank)
return input_tensor
def recv_backward(self, model_chunk_id: int, next_rank: int = None) -> Any:
"""Copy the gradient tensor from the next stage in pipeline as the input gradient of this stage.
For interleaved 1F1B.
Args:
model_chunk_id (int): The current model chunk idx.
next_rank (int, optional): The rank of the source of the tensor.
Returns:
Any: The input gradient tensor or gradient tensor list.
"""
if self.stage_manager.is_last_stage(model_chunk_id):
output_tensor_grad = None
else:
output_tensor_grad = self.comm.recv_backward(next_rank)
return output_tensor_grad
def send_forward(self, model_chunk_id, output_object: Any, next_rank: int = None) -> None:
"""Sends the input tensor to the next stage in pipeline.
For interleaved 1F1B.
Args:
model_chunk_id (int): The current model chunk idx.
output_object (Any): Object to be sent.
next_rank (int, optional): The rank of the recipient of the tensor.
"""
if not self.stage_manager.is_last_stage(model_chunk_id):
self.comm.send_forward(output_object, next_rank)
def send_backward(self, model_chunk_id, input_object: Any, prev_rank: int = None) -> None:
"""Sends the gradient tensor to the previous stage in pipeline.
For interleaved 1F1B.
Args:
model_chunk_id (int): The current model chunk idx.
input_object (Any): Object to be sent.
prev_rank (int, optional): The rank of the recipient of the tensor
"""
if not self.stage_manager.is_first_stage(model_chunk_id):
self.comm.send_backward(input_object, prev_rank)
def forward_step(
self,
model_chunk: Union[ModuleList, Module],
model_chunk_id: int,
input_obj: Optional[dict],
criterion: Callable,
accum_loss: Optional[torch.Tensor] = None,
outputs: Optional[List[Any]] = None,
) -> Union[torch.Tensor, dict]:
"""Forward one step of the pipeline
Args:
model (ModuleList or Module): Model Chunk to be run
input_obj (Optional[dict]): The output from the previous stage. If it is the first stage, the `input_obj` is None.
criterion (Callable): Criterion to calculate loss.
accum_loss (Optional[torch.Tensor], optional): Accumulated loss. Defaults to None.
outputs (Optional[List[Any]], optional): List to store the output of the last stage (final output). Defaults to None.
Returns:
Union[torch.Tensor, dict]: The intermediate output (dict) of the current stage. If it is the last stage, the output is the loss (Tensor).
"""
micro_batch = self.load_micro_batch(model_chunk_id=model_chunk_id)
# for the first stage, input_obj is None
# for the non-first stage, input_obj is the output of the previous stage and it's must be a dict
self.stage_manager.model_chunk_id = model_chunk_id
if isinstance(model_chunk, ModuleList):
output_obj = model_forward(model_chunk[model_chunk_id], micro_batch, input_obj)
else:
# NOTE: in shardformer, each device still has the entire model, so we need to use relevant stage layers
internal_inputs = {} if input_obj is None else input_obj
internal_inputs["stage_index"] = self.stage_manager.stage_indices[model_chunk_id]
output_obj = model_forward(model_chunk, micro_batch, internal_inputs)
self.stage_manager.model_chunk_id = None
if self.stage_manager.is_last_stage(model_chunk_id):
loss = criterion(output_obj, micro_batch) / self.num_microbatch
if accum_loss is not None:
accum_loss.add_(loss.detach())
if outputs is not None:
outputs.append(tree_map(detach, output_obj))
return loss
else:
return output_obj
def backward_step(
self,
optimizer: OptimizerWrapper,
input_obj: Optional[dict],
output_obj: Union[dict, torch.Tensor],
output_obj_grad: Optional[dict],
) -> Optional[dict]:
"""Backward one step of the pipeline
Args:
optimizer (OptimizerWrapper): Optimizer to update the model
input_obj (Optional[dict]): Output of the previous stage. If it is the first stage, the `input_obj` is None.
output_obj (Union[dict, torch.Tensor]): Output of the current stage. If it is the last stage, the output is the loss (Tensor).
output_obj_grad (dict): Gradient of the `output_obj`. If it is the last stage, the `output_obj_grad` is None.
Returns:
Optional[dict]: Gradient of the `input_obj`. If it is the first stage, the `input_obj_grad` is None.
"""
# Retain the grad on the input_obj.
tree_map(retain_grad, input_obj)
# Backward pass.
if output_obj_grad is None:
optimizer.backward(output_obj)
else:
if "backward_tensor_keys" not in output_obj:
for k, grad in output_obj_grad.items():
optimizer.backward_by_grad(output_obj[k], grad)
else:
for k, grad in output_obj_grad.items():
output_obj[k].grad = grad
for k in output_obj["backward_tensor_keys"]:
tensor_to_backward = output_obj[k]
optimizer.backward_by_grad(tensor_to_backward, tensor_to_backward.grad)
# Collect the grad of the input_obj.
input_obj_grad = None
if input_obj is not None:
input_obj_grad = {}
for k, v in input_obj.items():
if isinstance(v, torch.Tensor) and v.grad is not None:
input_obj_grad[k] = v.grad
return input_obj_grad
def forward_backward_step(
self,
model_chunk: Union[ModuleList, Module],
data_iter: Iterable,
criterion: Callable[..., Any],
optimizer: Optional[OptimizerWrapper] = None,
return_loss: bool = False,
return_outputs: bool = False,
) -> dict:
"""Runs interleaved schedule, with communication between pipeline stages.
Args:
model_chunk (ModuleList or Module): Model Chunk to be trained. Original interleaved uses a module list whereas shardformer uses entire model + layer specification
data_iter (Iterable): Data iterator.
criterion (Callable[[Any, Any], Tensor]): Criterion to be used. It should take two arguments: model outputs and inputs, and returns loss tensor.
optimizer (OptimizerWrapper, optional): Optimizer to be used. Can be None when only forward is executed. Defaults to None.
return_loss (bool, optional): Whether to return loss. Defaults to False. Whether to return loss.
return_outputs (bool, optional): Whether to return model outputs. Defaults to False. Whether to return model outputs.
Returns:
dict: A dict with keys: 'loss' and 'outputs'.
"""
# TODO: handle arbitrary batch size when forward_only == True
forward_only = not torch.is_grad_enabled()
if optimizer is None:
assert forward_only, "Optimizer should be passed when doing backward."
self.load_batch(data_iter)
num_microbatch = self.num_microbatch * self.num_model_chunks
if forward_only:
num_warmup_microbatch = num_microbatch
else:
num_warmup_microbatch = (self.stage_manager.num_stages - self.stage_manager.stage - 1) * 2
num_warmup_microbatch += (self.num_model_chunks - 1) * self.stage_manager.num_stages
num_warmup_microbatch = min(num_warmup_microbatch, num_microbatch)
num_microbatch_remaining = num_microbatch - num_warmup_microbatch
# Input, output tensors only need to be saved when doing backward passes
input_objs = None
output_objs = None
if not forward_only:
input_objs = [[] for _ in range(self.num_model_chunks)]
output_objs = [[] for _ in range(self.num_model_chunks)]
outputs = [] if return_outputs and self.stage_manager.is_last_stage(-1) else None
if return_loss and self.stage_manager.is_last_stage(-1):
accum_loss = torch.zeros(1, device=get_current_device())
else:
accum_loss = None
# for ranks except the first one, get into recv state
input_obj = self.recv_forward(0)
# Run warmup forward passes.
for i in range(num_warmup_microbatch):
model_chunk_id = self.get_model_chunk_id(i, is_forward=True)
# recv first on first rank to avoid sending or receiving at the same time
if self.stage_manager.is_first_stage(-1):
input_obj = self.recv_forward(model_chunk_id)
output_obj = self.forward_step(model_chunk, model_chunk_id, input_obj, criterion, accum_loss, outputs)
self.send_forward(model_chunk_id, output_obj)
if not forward_only:
input_objs[model_chunk_id].append(input_obj)
output_objs[model_chunk_id].append(output_obj)
else:
output_obj = self.forward_step(model_chunk, model_chunk_id, input_obj, criterion, accum_loss, outputs)
if not forward_only:
input_objs[model_chunk_id].append(input_obj)
output_objs[model_chunk_id].append(output_obj)
self.send_forward(model_chunk_id, output_obj)
if num_microbatch_remaining == 0 and i + 1 == num_warmup_microbatch:
break
model_chunk_id = self.get_model_chunk_id(i + 1, is_forward=True)
input_obj = self.recv_forward(model_chunk_id)
# Run 1F1B in steady state.
for i in range(num_microbatch_remaining):
model_chunk_id = self.get_model_chunk_id(i + num_warmup_microbatch, is_forward=True)
last_iteration = i == num_microbatch_remaining - 1
output_obj = self.forward_step(model_chunk, model_chunk_id, input_obj, criterion, accum_loss, outputs)
if forward_only:
self.send_forward(model_chunk_id, output_obj)
if not last_iteration:
input_obj = self.recv_forward(model_chunk_id)
else:
self.send_forward(model_chunk_id, output_obj)
# Add input_obj and output_obj to end of list.
input_objs[model_chunk_id].append(input_obj)
output_objs[model_chunk_id].append(output_obj)
model_chunk_id = self.get_model_chunk_id(i, is_forward=False)
output_obj_grad = self.recv_backward(model_chunk_id)
# Pop output_obj and output_obj from the start of the list for
# the backward pass.
input_obj = input_objs[model_chunk_id].pop(0)
output_obj = output_objs[model_chunk_id].pop(0)
# backward
input_obj_grad = self.backward_step(optimizer, input_obj, output_obj, output_obj_grad)
if last_iteration:
input_obj = None
else:
model_chunk_id = self.get_model_chunk_id(i + num_warmup_microbatch + 1, is_forward=True)
input_obj = self.recv_forward(model_chunk_id)
model_chunk_id = self.get_model_chunk_id(i, is_forward=False)
self.send_backward(model_chunk_id, input_obj_grad)
# Run cooldown backward passes.
if not forward_only:
for i in range(num_microbatch_remaining, num_microbatch):
model_chunk_id = self.get_model_chunk_id(i, is_forward=False)
input_obj = input_objs[model_chunk_id].pop(0)
output_obj = output_objs[model_chunk_id].pop(0)
output_obj_grad = self.recv_backward(model_chunk_id)
input_obj_grad = self.backward_step(optimizer, input_obj, output_obj, output_obj_grad)
self.send_backward(model_chunk_id, input_obj_grad)
if not forward_only:
assert all(len(v) == 0 for v in input_objs) and all(len(v) == 0 for v in output_objs)
if outputs is not None:
outputs = merge_batch(outputs)
return {"loss": accum_loss, "outputs": outputs}