ColossalAI/colossalai/nn/init.py

253 lines
9.3 KiB
Python

import math
import warnings
import torch.nn as nn
from torch import Tensor
def zeros_():
"""Return the initializer filling the input Tensor with the scalar zeros"""
def initializer(tensor: Tensor, fan_in: int = None, fan_out: int = None):
return nn.init.zeros_(tensor)
return initializer
def ones_():
"""Return the initializer filling the input Tensor with the scalar ones"""
def initializer(tensor: Tensor, fan_in: int = None, fan_out: int = None):
return nn.init.ones_(tensor)
return initializer
def uniform_(a: float = 0.0, b: float = 1.0):
r"""Return the initializer filling the input Tensor with values drawn from the uniform
distribution :math:`\mathcal{U}(a, b)`.
Args:
a (float): the lower bound of the uniform distribution. Defaults 0.0.
b (float): the upper bound of the uniform distribution. Defaults 1.0.
"""
def initializer(tensor: Tensor, fan_in: int = None, fan_out: int = None):
return nn.init.uniform_(tensor, a, b)
return initializer
def normal_(mean: float = 0.0, std: float = 1.0):
r"""Return the initializer filling the input Tensor with values drawn from the normal distribution
.. math::
\mathcal{N}(\text{mean}, \text{std}^2)
Args:
mean (float): the mean of the normal distribution. Defaults 0.0.
std (float): the standard deviation of the normal distribution. Defaults 1.0.
"""
def initializer(tensor: Tensor, fan_in: int = None, fan_out: int = None):
return nn.init.normal_(tensor, mean, std)
return initializer
def trunc_normal_(mean: float = 0.0, std: float = 1.0, a: float = -2.0, b: float = 2.0):
r"""Return the initializer filling the input Tensor with values drawn from a truncated
normal distribution. The values are effectively drawn from the
normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)`
with values outside :math:`[a, b]` redrawn until they are within
the bounds. The method used for generating the random values works
best when :math:`a \leq \text{mean} \leq b`.
Args:
mean (float): the mean of the normal distribution. Defaults 0.0.
std (float): the standard deviation of the normal distribution. Defaults 1.0.
a (float): the minimum cutoff value. Defaults -2.0.
b (float): the maximum cutoff value. Defaults 2.0.
"""
def initializer(tensor: Tensor, fan_in: int = None, fan_out: int = None):
return nn.init.trunc_normal_(tensor, mean, std, a, b)
return initializer
def kaiming_uniform_(a=0, mode="fan_in", nonlinearity="leaky_relu"):
r"""Return the initializer filling the input `Tensor` with values according to the method
described in `Delving deep into rectifiers: Surpassing human-level
performance on ImageNet classification` - He, K. et al. (2015), using a
uniform distribution. The resulting tensor will have values sampled from
:math:`\mathcal{U}(-\text{bound}, \text{bound})` where
.. math::
\text{bound} = \text{gain} \times \sqrt{\frac{3}{\text{fan_mode}}}
Also known as 'He initialization'.
Args:
a (int): the negative slope of the rectifier used after this layer (only used with ``'leaky_relu'``).
mode (str, optional): either ``'fan_in'`` (default) or ``'fan_out'``. Choosing ``'fan_in'``
preserves the magnitude of the variance of the weights in the
forward pass. Choosing ``'fan_out'`` preserves the magnitudes in the
backwards pass.
nonlinearity (str, optional): the non-linear function (`nn.functional` name),
recommended to use only with ``'relu'`` or ``'leaky_relu'`` (default).
"""
# adapted from torch.nn.init
def initializer(tensor: Tensor, fan_in: int = None, fan_out: int = None):
if 0 in tensor.shape:
warnings.warn("Initializing zero-element tensors is a no-op")
return tensor
if mode == "fan_in":
assert fan_in is not None, "Fan_in is not provided."
fan = fan_in
elif mode == "fan_out":
assert fan_out is not None, "Fan_out is not provided."
fan = fan_out
else:
raise ValueError(f"Invalid initialization mode '{mode}'")
std = nn.init.calculate_gain(nonlinearity, a) / math.sqrt(fan)
bound = math.sqrt(3.0) * std
return nn.init.uniform_(tensor, -bound, bound)
return initializer
def kaiming_normal_(a=0, mode="fan_in", nonlinearity="leaky_relu"):
r"""Return the initializer filling the input `Tensor` with values according to the method
described in `Delving deep into rectifiers: Surpassing human-level
performance on ImageNet classification` - He, K. et al. (2015), using a
normal distribution. The resulting tensor will have values sampled from
:math:`\mathcal{N}(0, \text{std}^2)` where
.. math::
\text{std} = \frac{\text{gain}}{\sqrt{\text{fan_mode}}}
Also known as 'He initialization'.
Args:
a (int): the negative slope of the rectifier used after this layer (only used with ``'leaky_relu'``).
mode (str, optional): either ``'fan_in'`` (default) or ``'fan_out'``. Choosing ``'fan_in'``
preserves the magnitude of the variance of the weights in the
forward pass. Choosing ``'fan_out'`` preserves the magnitudes in the
backwards pass.
nonlinearity (str, optional): the non-linear function (`nn.functional` name),
recommended to use only with ``'relu'`` or ``'leaky_relu'`` (default).
"""
# adapted from torch.nn.init
def initializer(tensor: Tensor, fan_in: int = None, fan_out: int = None):
if 0 in tensor.shape:
warnings.warn("Initializing zero-element tensors is a no-op")
return tensor
if mode == "fan_in":
assert fan_in is not None, "Fan_in is not provided."
fan = fan_in
elif mode == "fan_out":
assert fan_out is not None, "Fan_out is not provided."
fan = fan_out
else:
raise ValueError(f"Invalid initialization mode '{mode}'")
std = nn.init.calculate_gain(nonlinearity, a) / math.sqrt(fan)
return nn.init.normal_(tensor, 0, std)
return initializer
def xavier_uniform_(a: float = math.sqrt(3.0), scale: float = 2.0, gain: float = 1.0):
r"""Return the initializer filling the input `Tensor` with values according to the method
described in `Understanding the difficulty of training deep feedforward
neural networks` - Glorot, X. & Bengio, Y. (2010), using a uniform
distribution. The resulting tensor will have values sampled from
:math:`\mathcal{U}(-a, a)` where
.. math::
a = \text{gain} \times \sqrt{\frac{6}{\text{fan_in} + \text{fan_out}}}
Also known as 'Glorot initialization'.
Args:
a (float, optional): an optional scaling factor used to calculate uniform
bounds from standard deviation. Defaults ``math.sqrt(3.)``.
scale (float, optional): an optional scaling factor used to calculate standard deviation. Defaults 2.0.
gain (float, optional): an optional scaling factor. Defaults 1.0.
"""
# adapted from torch.nn.init
def initializer(tensor: Tensor, fan_in: int = None, fan_out: int = None):
assert fan_in is not None, "Fan_in is not provided."
fan = fan_in
if fan_out is not None:
fan += fan_out
std = gain * math.sqrt(scale / float(fan))
bound = a * std
return nn.init.uniform_(tensor, -bound, bound)
return initializer
def xavier_normal_(scale: float = 2.0, gain: float = 1.0):
r"""Return the initializer filling the input `Tensor` with values according to the method
described in `Understanding the difficulty of training deep feedforward
neural networks` - Glorot, X. & Bengio, Y. (2010), using a normal
distribution. The resulting tensor will have values sampled from
:math:`\mathcal{N}(0, \text{std}^2)` where
.. math::
\text{std} = \text{gain} \times \sqrt{\frac{2}{\text{fan_in} + \text{fan_out}}}
Also known as 'Glorot initialization'.
Args:
scale (float, optional): an optional scaling factor used to calculate standard deviation. Defaults 2.0.
gain (float, optional): an optional scaling factor. Defaults 1.0.
"""
# adapted from torch.nn.init
def initializer(tensor: Tensor, fan_in: int = None, fan_out: int = None):
assert fan_in is not None, "Fan_in is not provided."
fan = fan_in
if fan_out is not None:
fan += fan_out
std = gain * math.sqrt(scale / float(fan))
return nn.init.normal_(tensor, 0.0, std)
return initializer
def lecun_uniform_():
# adapted from jax.nn.initializers
def initializer(tensor: Tensor, fan_in: int = None, fan_out: int = None):
assert fan_in is not None, "Fan_in is not provided."
var = 1.0 / fan_in
bound = math.sqrt(3 * var)
return nn.init.uniform_(tensor, -bound, bound)
return initializer
def lecun_normal_():
# adapted from jax.nn.initializers
def initializer(tensor: Tensor, fan_in: int = None, fan_out: int = None):
assert fan_in is not None, "Fan_in is not provided."
std = math.sqrt(1.0 / fan_in)
return nn.init.trunc_normal_(tensor, std=std / 0.87962566103423978)
return initializer