mirror of https://github.com/hpcaitech/ColossalAI
145 lines
5.1 KiB
Python
145 lines
5.1 KiB
Python
import inspect
|
|
import math
|
|
from typing import Callable
|
|
|
|
from torch import dtype, nn
|
|
|
|
from colossalai.nn import init
|
|
|
|
from ..parallel_1d import *
|
|
from ..parallel_2d import *
|
|
from ..parallel_2p5d import *
|
|
from ..parallel_3d import *
|
|
from ..utils import get_tensor_parallel_mode
|
|
from ..vanilla import *
|
|
from ._utils import ColossalaiModule
|
|
|
|
_parallel_linear = {None: VanillaLinear, "1d": Linear1D, "2d": Linear2D, "2.5d": Linear2p5D, "3d": Linear3D}
|
|
|
|
_parallel_classifier = {
|
|
None: VanillaClassifier,
|
|
"1d": Classifier1D,
|
|
"2d": Classifier2D,
|
|
"2.5d": Classifier2p5D,
|
|
"3d": Classifier3D,
|
|
}
|
|
|
|
_vocab_parallel_classifier = {
|
|
"1d": VocabParallelClassifier1D,
|
|
"2d": VocabParallelClassifier2D,
|
|
"2.5d": VocabParallelClassifier2p5D,
|
|
"3d": VocabParallelClassifier3D,
|
|
}
|
|
|
|
|
|
class Linear(ColossalaiModule):
|
|
"""Linear layer of colossalai.
|
|
|
|
Args:
|
|
in_features (int): size of each input sample.
|
|
out_features (int): size of each output sample.
|
|
bias (bool, optional): If set to ``False``, the layer will not learn an additive bias, defaults to ``True``.
|
|
dtype (:class:`torch.dtype`, optional): The dtype of parameters, defaults to None.
|
|
weight_initializer (:class:`typing.Callable`, optional):
|
|
The initializer of weight, defaults to kaiming uniform initializer.
|
|
bias_initializer (:class:`typing.Callable`, optional):
|
|
The initializer of bias, defaults to xavier uniform initializer.
|
|
|
|
Note: ``kwargs`` would contain different parameters when you use different parallelisms.
|
|
|
|
The ``kwargs`` should contain parameters below:
|
|
::
|
|
|
|
Linear1D:
|
|
gather_output: bool (optional, default to be false)
|
|
skip_bias_add: bool (optional, default to be false)
|
|
Linear2D:
|
|
skip_bias_add: bool (optional, default to be false)
|
|
Linear2p5D:
|
|
skip_bias_add: bool (optional, default to be false)
|
|
Linear3D:
|
|
None
|
|
|
|
More details about ``initializer`` please refer to
|
|
`init <https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/nn/init.py>`_.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
in_features: int,
|
|
out_features: int,
|
|
bias: bool = True,
|
|
dtype: dtype = None,
|
|
weight_initializer: Callable = init.kaiming_uniform_(a=math.sqrt(5)),
|
|
bias_initializer: Callable = init.xavier_uniform_(a=1, scale=1),
|
|
**kwargs,
|
|
) -> None:
|
|
tensor_parallel = get_tensor_parallel_mode()
|
|
linear_cls = _parallel_linear[tensor_parallel]
|
|
gather_output = kwargs.pop("gather_output", None)
|
|
if "gather_output" in inspect.signature(linear_cls.__init__).parameters.keys(): # gather_out arg is available
|
|
kwargs["gather_output"] = gather_output
|
|
layer = linear_cls(
|
|
in_features,
|
|
out_features,
|
|
bias=bias,
|
|
dtype=dtype,
|
|
weight_initializer=weight_initializer,
|
|
bias_initializer=bias_initializer,
|
|
**kwargs,
|
|
)
|
|
super().__init__(layer)
|
|
|
|
|
|
class Classifier(ColossalaiModule):
|
|
"""Classifier layer of colossalai.
|
|
|
|
Args:
|
|
in_features (int): size of each input sample.
|
|
num_classes (int): number of classes.
|
|
weight (:class:`torch.nn.Parameter`, optional): weight of the classifier, defaults to None.
|
|
bias (bool, optional): If set to ``False``, the layer will not learn an additive bias, defaults to ``True``.
|
|
dtype (:class:`torch.dtype`, optional): The dtype of parameters, defaults to None.
|
|
weight_initializer (:class:`typing.Callable`, optional):
|
|
The initializer of weight, defaults to kaiming uniform initializer.
|
|
bias_initializer (:class:`typing.Callable`, optional):
|
|
The initializer of bias, defaults to xavier uniform initializer.
|
|
|
|
More details about ``initializer`` please refer to
|
|
`init <https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/nn/init.py>`_.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
in_features: int,
|
|
num_classes: int,
|
|
weight: nn.Parameter = None,
|
|
bias: bool = True,
|
|
dtype: dtype = None,
|
|
weight_initializer: Callable = init.kaiming_uniform_(a=math.sqrt(5)),
|
|
bias_initializer: Callable = init.xavier_uniform_(a=1, scale=1),
|
|
vocab_parallel_limit: int = 2048,
|
|
) -> None:
|
|
tensor_parallel = get_tensor_parallel_mode()
|
|
if num_classes <= vocab_parallel_limit or tensor_parallel is None:
|
|
layer = _parallel_classifier[tensor_parallel](
|
|
in_features,
|
|
num_classes,
|
|
weight=weight,
|
|
bias=bias,
|
|
dtype=dtype,
|
|
weight_initializer=weight_initializer,
|
|
bias_initializer=bias_initializer,
|
|
)
|
|
else:
|
|
layer = _vocab_parallel_classifier[tensor_parallel](
|
|
in_features,
|
|
num_classes,
|
|
weight=weight,
|
|
bias=bias,
|
|
dtype=dtype,
|
|
weight_initializer=weight_initializer,
|
|
bias_initializer=bias_initializer,
|
|
)
|
|
super().__init__(layer)
|