ColossalAI/colossalai/kernel/triton/copy_kv_cache_dest.py

72 lines
2.3 KiB
Python

import torch
try:
import triton
import triton.language as tl
HAS_TRITON = True
except ImportError:
HAS_TRITON = False
print("please install triton from https://github.com/openai/triton")
if HAS_TRITON:
# adapted from https://github.com/ModelTC/lightllm/blob/5c559dd7981ed67679a08a1e09a88fb4c1550b3a/lightllm/common/triton_kernel/destindex_copy_kv.py
@triton.jit
def _fwd_copy_kv_cache_dest(
kv_cache_ptr,
dest_index_ptr,
out,
stride_k_bs,
stride_k_h,
stride_k_d,
stride_o_bs,
stride_o_h,
stride_o_d,
head_num,
BLOCK_DMODEL: tl.constexpr,
BLOCK_HEAD: tl.constexpr,
):
cur_index = tl.program_id(0)
offs_h = tl.arange(0, BLOCK_HEAD)
offs_d = tl.arange(0, BLOCK_DMODEL)
dest_index = tl.load(dest_index_ptr + cur_index)
cache_offsets = stride_k_h * offs_h[:, None] + stride_k_d * offs_d[None, :]
k_ptrs = kv_cache_ptr + cur_index * stride_k_bs + cache_offsets
o_offsets = stride_o_h * offs_h[:, None] + stride_o_d * offs_d[None, :]
o_ptrs = out + dest_index * stride_o_bs + o_offsets
k = tl.load(k_ptrs, mask=offs_h[:, None] < head_num, other=0.0)
tl.store(o_ptrs, k, mask=offs_h[:, None] < head_num)
return
# adepted from https://github.com/ModelTC/lightllm/blob/5c559dd7981ed67679a08a1e09a88fb4c1550b3a/lightllm/common/triton_kernel/destindex_copy_kv.py
@torch.no_grad()
def copy_kv_cache_to_dest(k_ptr, dest_index_ptr, out):
seq_len = dest_index_ptr.shape[0]
head_num = k_ptr.shape[1]
head_dim = k_ptr.shape[2]
assert head_num == out.shape[1], "head_num should be the same for k_ptr and out"
assert head_dim == out.shape[2], "head_dim should be the same for k_ptr and out"
num_warps = 2
_fwd_copy_kv_cache_dest[(seq_len,)](
k_ptr,
dest_index_ptr,
out,
k_ptr.stride(0),
k_ptr.stride(1),
k_ptr.stride(2),
out.stride(0),
out.stride(1),
out.stride(2),
head_num,
BLOCK_DMODEL=head_dim,
BLOCK_HEAD=triton.next_power_of_2(head_num),
num_warps=num_warps,
num_stages=2,
)
return