mirror of https://github.com/hpcaitech/ColossalAI
791 lines
29 KiB
Python
791 lines
29 KiB
Python
# coding=utf-8
|
|
import os
|
|
import re
|
|
from collections import abc as container_abcs
|
|
from collections import defaultdict
|
|
from itertools import chain
|
|
from pathlib import Path
|
|
from typing import Iterator, List, Mapping, Optional, OrderedDict, Tuple
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
from packaging.version import Version
|
|
from torch.optim import Optimizer
|
|
from torch.utils._pytree import tree_map
|
|
|
|
from colossalai.tensor.d_tensor import (
|
|
is_customized_distributed_tensor,
|
|
is_distributed_tensor,
|
|
to_global,
|
|
to_global_for_customized_distributed_tensor,
|
|
)
|
|
|
|
SAFE_WEIGHTS_NAME = "model.safetensors"
|
|
WEIGHTS_NAME = "pytorch_model.bin"
|
|
STATES_NAME = "pytorch_optim.bin"
|
|
SAFE_WEIGHTS_INDEX_NAME = "model.safetensors.index.json"
|
|
WEIGHTS_INDEX_NAME = "pytorch_model.bin.index.json"
|
|
STATES_INDEX_NAME = "pytorch_optim.bin.index.json"
|
|
GROUP_FILE_NAME = "pytorch_optim_group.bin"
|
|
|
|
# ======================================
|
|
# General helper functions
|
|
# ======================================
|
|
|
|
|
|
def calculate_tensor_size(tensor: torch.Tensor) -> float:
|
|
"""
|
|
Calculate the size of a parameter in MB. Used to compute whether a group of params exceed the shard size.
|
|
If so, a new shard should be created.
|
|
|
|
Args:
|
|
tensor (torch.Tensor): the tensor to calculate size for.
|
|
|
|
Returns:
|
|
float: size of the tensor in MB.
|
|
"""
|
|
return tensor.numel() * tensor.element_size() / 1024 / 1024
|
|
|
|
|
|
def is_safetensors_available() -> bool:
|
|
"""
|
|
Check whether safetensors is available.
|
|
|
|
Returns:
|
|
bool: whether safetensors is available.
|
|
"""
|
|
try:
|
|
return True
|
|
except ImportError:
|
|
return False
|
|
|
|
|
|
def is_dtensor_checkpoint(checkpoint_file_path: str) -> bool:
|
|
"""
|
|
Check whether the checkpoint file is a dtensor checkpoint.
|
|
|
|
Args:
|
|
checkpoint_file_path (str): path to the checkpoint file.
|
|
|
|
Returns:
|
|
bool: whether the checkpoint file is a dtensor checkpoint.
|
|
"""
|
|
if checkpoint_file_path.endswith(".*.safetensors") or checkpoint_file_path.endswith(".*.bin"):
|
|
return True
|
|
else:
|
|
return False
|
|
|
|
|
|
def is_safetensor_checkpoint(checkpoint_file_path: str) -> bool:
|
|
"""
|
|
Check whether the checkpoint file is a safetensor checkpoint.
|
|
|
|
Args:
|
|
checkpoint_file_path (str): path to the checkpoint file.
|
|
|
|
Returns:
|
|
bool: whether the checkpoint file is a safetensor checkpoint.
|
|
"""
|
|
if checkpoint_file_path.endswith(".safetensors"):
|
|
return True
|
|
else:
|
|
return False
|
|
|
|
|
|
def search_tp_partition_dim(current_shape: torch.Size, original_shape: torch.Size, tp_size: int) -> Optional[int]:
|
|
"""
|
|
Given the current shape of parameter and the shape of parameter before sharding,
|
|
return the dimension along which the parameter is sharded when using tensor parallel.
|
|
If tensor parallel is not used, return None.
|
|
|
|
Args:
|
|
current_shape (torch.Size): The current shape of parameter after sharding.
|
|
original_shape (torch.Size): The shape of parameter before sharding.
|
|
tp_size (int): The size of tp group.
|
|
|
|
Returns:
|
|
Optional[int]: The dimension along which parameter is partitioned.
|
|
"""
|
|
partition_dim = None
|
|
for dim, length in enumerate(original_shape):
|
|
if length > current_shape[dim]:
|
|
partition_dim = dim
|
|
break
|
|
if partition_dim is not None:
|
|
assert (
|
|
original_shape[partition_dim] == tp_size * current_shape[partition_dim]
|
|
), f"The parameter isn't evenly distributed among tensor parallel group: \
|
|
shape before sharding {original_shape}, shape after sharding {current_shape}"
|
|
|
|
return partition_dim
|
|
|
|
|
|
# ======================================
|
|
# Helper classes and functions for saving shard file
|
|
# ======================================
|
|
|
|
|
|
class StateDictSharder:
|
|
def __init__(self, size_per_shard: int) -> None:
|
|
self.max_shard_size = size_per_shard
|
|
self.current_block = OrderedDict()
|
|
self.current_block_size = 0
|
|
|
|
def append_param(self, name: str, tensor: torch.Tensor) -> Tuple[Optional[OrderedDict], int]:
|
|
tensor_size = calculate_tensor_size(tensor)
|
|
ret_block = None
|
|
ret_block_size = 0
|
|
|
|
# before we return the current block and create a new block,
|
|
# we need to ensure that the current block is not empty
|
|
if self.current_block_size + tensor_size > self.max_shard_size and self.current_block_size > 0:
|
|
ret_block = self.current_block
|
|
ret_block_size = self.current_block_size
|
|
self.current_block = OrderedDict()
|
|
self.current_block_size = 0
|
|
|
|
self.current_block[name] = tensor
|
|
self.current_block_size += tensor_size
|
|
return ret_block, ret_block_size
|
|
|
|
def append_optim_state(self, param_id: int, state: OrderedDict) -> Tuple[Optional[OrderedDict], int]:
|
|
# A state might contain more than one tensors.
|
|
# e.g. each Adam state includes: 'step', 'exp_avg', 'exp_avg_sq'
|
|
state_size = 0
|
|
isDTensor = False
|
|
for state_tensor in state.values():
|
|
# When state_tensor is not of Tensor class,
|
|
# e.g., a SGD optimizer with momentum set to 0 can have None as state
|
|
# The calculation of tensor size should be skipped to avoid error.
|
|
if not isinstance(state_tensor, torch.Tensor):
|
|
continue
|
|
|
|
# If the states are stored as DTensors, mark isDTensor as true.
|
|
if is_distributed_tensor(state_tensor):
|
|
isDTensor = True
|
|
state_size += calculate_tensor_size(state_tensor)
|
|
|
|
ret_block = None
|
|
ret_block_size = 0
|
|
|
|
# directly return if state is stored as distributed tensor
|
|
if isDTensor:
|
|
return ret_block, ret_block_size
|
|
|
|
# before we return the current block and create a new block,
|
|
# we need to ensure that the current block is not empty
|
|
if self.current_block_size + state_size > self.max_shard_size and self.current_block_size > 0:
|
|
ret_block = self.current_block
|
|
ret_block_size = self.current_block_size
|
|
self.current_block = OrderedDict()
|
|
self.current_block_size = 0
|
|
|
|
self.current_block[param_id] = state
|
|
self.current_block_size += state_size
|
|
return ret_block, ret_block_size
|
|
|
|
|
|
def gather_distributed_param(param: torch.Tensor, keep_vars: bool = False) -> torch.Tensor:
|
|
"""
|
|
Gather the complete parameter for saving if passed in param is distributed under tp setting.
|
|
|
|
Args:
|
|
param (torch.Tensor): A model parameter, might be d_tensor.
|
|
keep_vars (bool, optional): Whether to return the parameter in calculation graph. Defaults to False.
|
|
|
|
Returns:
|
|
torch.Tensor: the complete parameter
|
|
"""
|
|
param_ = param if keep_vars else param.detach()
|
|
if is_distributed_tensor(param_):
|
|
return to_global(param_)
|
|
elif is_customized_distributed_tensor(param_):
|
|
return to_global_for_customized_distributed_tensor(param_)
|
|
else:
|
|
return param_
|
|
|
|
|
|
def save_state_dict_shards(
|
|
sharded_state_dict: Iterator[Tuple[OrderedDict, int]],
|
|
checkpoint: str,
|
|
index_file: "CheckpointIndexFile",
|
|
base_filename: str,
|
|
is_master: bool,
|
|
use_safetensors: bool = False,
|
|
use_pp_format: bool = False,
|
|
) -> int:
|
|
"""
|
|
Save sharded state dict only on master rank, this method can be used by both model and optimizer states.
|
|
Args:
|
|
sharded_state_dict (Iterator[Tuple[OrderedDict, int]]): a generator of shards, each shard contains state dict and shard size.
|
|
checkpoint (str): The path of checkpoint directory as string.
|
|
index_file (CheckpointIndexFile): The index file object to be updated.
|
|
base_filename (str): Decides the prefix of filenames of shards.
|
|
is_master (bool): Whether current rank is main process.
|
|
use_safetensors (bool, optional): Whether to use safetensors to save checkpoint. Defaults to False.
|
|
use_pp_format: (bool, optional): Whether to save the files in pipeline format including stage information. Defaults to False.
|
|
|
|
Returns:
|
|
int: the total size of shards
|
|
"""
|
|
|
|
total_size = 0
|
|
shard_filenames = []
|
|
for idx, shard_pair in enumerate(sharded_state_dict):
|
|
shard, current_size = shard_pair
|
|
if not is_master:
|
|
del shard
|
|
continue
|
|
shard_file = get_shard_filename(base_filename, idx)
|
|
total_size = total_size + current_size
|
|
for key in shard.keys():
|
|
index_file.append_weight_map(key, shard_file)
|
|
checkpoint_file_path = os.path.join(checkpoint, shard_file)
|
|
|
|
# Only save on master rank.
|
|
save_state_dict(shard, checkpoint_file_path, use_safetensors=use_safetensors)
|
|
shard_filenames.append(shard_file)
|
|
del shard
|
|
|
|
# Clean folder, deleted unneeded files.
|
|
clean_folder(checkpoint, base_filename, shard_filenames, is_master=is_master, use_pp_format=use_pp_format)
|
|
|
|
return total_size
|
|
|
|
|
|
def shard_model_checkpoint(state_dict: torch.Tensor, max_shard_size: int = 1024) -> Iterator[Tuple[OrderedDict, int]]:
|
|
"""
|
|
Splits a model state dictionary in sub-checkpoints so that the final size of each sub-checkpoint does not exceed a
|
|
given size.
|
|
"""
|
|
state_dict_sharder = StateDictSharder(max_shard_size)
|
|
|
|
for key, weight in state_dict.items():
|
|
if not is_distributed_tensor(weight):
|
|
block, block_size = state_dict_sharder.append_param(key, weight)
|
|
|
|
if block != None:
|
|
yield block, block_size
|
|
|
|
# Return the last block in sharder.
|
|
yield state_dict_sharder.current_block, state_dict_sharder.current_block_size
|
|
|
|
|
|
def shard_optimizer_checkpoint(state_dict: dict, max_shard_size: int = 1024) -> Iterator[Tuple[OrderedDict, int]]:
|
|
"""
|
|
Splits an optimizer state dictionary in sub-checkpoints so that the final size of each sub-checkpoint does not exceed a
|
|
given size.
|
|
"""
|
|
|
|
# Only split state_dict['state']; state_dict['param_group'] is not considered in this function.
|
|
states = state_dict["state"]
|
|
state_dict_sharder = StateDictSharder(max_shard_size)
|
|
|
|
for param_id, state in states.items():
|
|
block, block_size = state_dict_sharder.append_optim_state(param_id, state)
|
|
if block != None:
|
|
yield block, block_size
|
|
|
|
# Return the last block in sharder.
|
|
yield state_dict_sharder.current_block, state_dict_sharder.current_block_size
|
|
|
|
|
|
# ======================================
|
|
# Helper functions for saving state dict
|
|
# ======================================
|
|
|
|
def save_state_dict(state_dict: dict, checkpoint_file_path: str, use_safetensors: bool) -> None:
|
|
"""
|
|
Save state dict to checkpoint.
|
|
|
|
Args:
|
|
state_dict (dict): state dict.
|
|
checkpoint_file_path (str): path to the checkpoint file.
|
|
use_safetensors (bool): whether to use safetensors to save the checkpoint.
|
|
"""
|
|
# Move all tensors in the state_dict to CPU before saving to avoid serialization issues
|
|
state_dict_cpu = tree_map(lambda x: x.cpu() if torch.is_tensor(x) else x, state_dict)
|
|
|
|
if use_safetensors:
|
|
assert is_safetensors_available(), "safetensors is not available."
|
|
assert checkpoint_file_path.endswith(
|
|
".safetensors"
|
|
), "safetensors only supports .safetensors suffix for checkpoint file."
|
|
from safetensors.torch import save_file as safe_save_file
|
|
|
|
safe_save_file(state_dict_cpu, checkpoint_file_path, metadata={"format": "pt"})
|
|
else:
|
|
torch.save(state_dict_cpu, checkpoint_file_path)
|
|
|
|
|
|
def save_param_groups(state_dict: dict, group_file_path: str) -> None:
|
|
"""
|
|
Save information of param_groups to given file path.
|
|
|
|
Args:
|
|
state_dict (dict): state dict.
|
|
group_file_path (str): path to the group file.
|
|
"""
|
|
param_groups = state_dict["param_groups"]
|
|
torch.save(param_groups, group_file_path)
|
|
|
|
|
|
def clean_folder(
|
|
checkpoint_path: str,
|
|
weights_name: str,
|
|
shard_filenames: List[str],
|
|
is_master: bool = True,
|
|
use_pp_format: bool = False,
|
|
):
|
|
"""
|
|
Clean the unneeded files in checkpoint directory after shards of state_dict have been saved.
|
|
|
|
Args:
|
|
checkpoint_path (str): Path to the checkpoint directory.
|
|
weights_name (str): Decides the prefix of filenames of weight shards.
|
|
shard_filenames (List[str]): The list of saved shard filenames which should not be removed.
|
|
is_master (bool, optional): Whether current rank is main process. Defaults to True.
|
|
use_pp_format: (bool, optional): Whether to save the files in pipeline format including stage information. Defaults to False.
|
|
|
|
"""
|
|
if is_master:
|
|
for filename in os.listdir(checkpoint_path):
|
|
full_filename = os.path.join(checkpoint_path, filename)
|
|
weights_no_suffix = weights_name.replace(".bin", "").replace(".safetensors", "")
|
|
filename_no_suffix = filename.replace(".bin", "").replace(".safetensors", "")
|
|
if not use_pp_format:
|
|
reg = re.compile(r"(.*?)-\d{5}")
|
|
else:
|
|
# When this checkpoint is created by pipeline parallel process, the pattern is a little different.
|
|
reg = re.compile(r"(.*?)-stage-\d{5}-shard-\d{5}")
|
|
if (
|
|
filename.startswith(weights_no_suffix)
|
|
and os.path.isfile(full_filename)
|
|
and filename not in shard_filenames
|
|
and reg.fullmatch(filename_no_suffix) is not None
|
|
):
|
|
os.remove(full_filename)
|
|
|
|
|
|
def save_config_file(model: nn.Module, checkpoint_path: str, is_master: bool = True):
|
|
"""
|
|
Save config.json/generation_config.json if model is a Huggingface pretrained model.
|
|
This method can only be called when a model is saved in a sharded way.
|
|
|
|
Args:
|
|
model (nn.Module): The model whose config should be saved if it's a huggingface model.
|
|
checkpoint_path (str): Path to the checkpoint directory.
|
|
is_master (bool): Whether current rank is main process.
|
|
"""
|
|
try:
|
|
from transformers.modeling_utils import PreTrainedModel, get_parameter_dtype
|
|
from transformers.modeling_utils import unwrap_model as unwrap_huggingface_model
|
|
except ImportError:
|
|
return
|
|
if not isinstance(model, PreTrainedModel):
|
|
return
|
|
|
|
model = unwrap_huggingface_model(model)
|
|
|
|
# save the string version of dtype to the config, e.g. convert torch.float32 => "float32"
|
|
dtype = get_parameter_dtype(model)
|
|
model.config.torch_dtype = str(dtype).split(".")[1]
|
|
|
|
# Attach architecture to the config
|
|
model.config.architectures = [model.__class__.__name__]
|
|
|
|
# Save the config
|
|
if is_master:
|
|
model.config.save_pretrained(checkpoint_path)
|
|
if model.can_generate():
|
|
model.generation_config.save_pretrained(checkpoint_path)
|
|
|
|
|
|
def save_dtensor(name: str, tensor: torch.Tensor, index_file: "CheckpointIndexFile", use_safetensors: bool) -> None:
|
|
"""
|
|
Save distributed tensor to checkpoint. This checkpoint will be a dictionary which contains
|
|
only one tensor.
|
|
|
|
Args:
|
|
tensor (Tensor): tensor to be saved.
|
|
index_file (CheckpointIndexFile): path to the checkpoint file.
|
|
size_per_shard (int): size per shard in MB.
|
|
"""
|
|
root_path = index_file.root_path
|
|
output_root_path = root_path.joinpath("dtensor")
|
|
|
|
# create directory
|
|
output_root_path.mkdir(exist_ok=True)
|
|
|
|
# save tensor to this directory
|
|
# TODO(YuliangLiu): get index of the tensor shard
|
|
# e.g. index =
|
|
index = 0
|
|
|
|
# save tensor to file
|
|
ckpt_file_name = generate_dtensor_file_name(name, index, use_safetensors)
|
|
ckpt_file_path = output_root_path.joinpath(ckpt_file_name)
|
|
|
|
# dtensor ckpt file always contains only one tensor
|
|
state_dict = {name: tensor}
|
|
save_state_dict(state_dict, str(ckpt_file_path), use_safetensors)
|
|
|
|
# update the weight map
|
|
# * means all shards
|
|
ckpt_file_name_in_weight_map = "dtensor/" + generate_dtensor_file_name(name, "*", use_safetensors)
|
|
index_file.append_weight_map(name, ckpt_file_name_in_weight_map)
|
|
|
|
|
|
def get_checkpoint_file_suffix(use_safetensors: bool) -> str:
|
|
"""
|
|
Get checkpoint file suffix.
|
|
|
|
Args:
|
|
use_safetensors (bool): whether to use safetensors to save the checkpoint.
|
|
|
|
Returns:
|
|
str: checkpoint file suffix.
|
|
"""
|
|
if use_safetensors:
|
|
return ".safetensors"
|
|
else:
|
|
return ".bin"
|
|
|
|
|
|
def generate_checkpoint_shard_file_name(
|
|
index: int, total_number: int, use_safetensors: bool, prefix: str = None
|
|
) -> str:
|
|
"""
|
|
Generate checkpoint shard file name.
|
|
|
|
Args:
|
|
index (int): index of the shard.
|
|
total_number (int): total number of shards.
|
|
use_safetensors (bool): whether to use safetensors to save the checkpoint.
|
|
prefix (str): prefix of the shard file name. Default: None.
|
|
|
|
Returns:
|
|
str: checkpoint shard file name.
|
|
"""
|
|
suffix = get_checkpoint_file_suffix(use_safetensors)
|
|
|
|
if prefix is None:
|
|
return f"{index:05d}-of-{total_number:05d}.{suffix}"
|
|
else:
|
|
return f"{prefix}-{index:05d}-of-{total_number:05d}.{suffix}"
|
|
|
|
|
|
def generate_dtensor_file_name(param_name: str, index: int, use_safetensors: bool) -> str:
|
|
"""
|
|
Generate dtensor file name.
|
|
|
|
Args:
|
|
param_name (str): name of the distributed parameter.
|
|
index (int): index of the shard.
|
|
use_safetensors (bool): whether to use safetensors to save the checkpoint.
|
|
|
|
Returns:
|
|
str: dtensor file name.
|
|
"""
|
|
suffix = get_checkpoint_file_suffix(use_safetensors)
|
|
return f"{param_name}.{index}.{suffix}"
|
|
|
|
|
|
# ========================================
|
|
# Helper functions for loading state dict
|
|
# ========================================
|
|
|
|
|
|
def load_shard_state_dict(checkpoint_file: Path, use_safetensors: bool = False):
|
|
"""
|
|
load shard state dict into model
|
|
"""
|
|
if use_safetensors and not checkpoint_file.suffix == ".safetensors":
|
|
raise Exception("load the model using `safetensors`, but no file endwith .safetensors")
|
|
if use_safetensors:
|
|
from safetensors.torch import load_file as safe_load_file
|
|
from safetensors.torch import safe_open
|
|
|
|
with safe_open(checkpoint_file, framework="pt") as f:
|
|
metadata = f.metadata()
|
|
if metadata["format"] != "pt":
|
|
raise NotImplementedError(
|
|
f"Conversion from a {metadata['format']} safetensors archive to PyTorch is not implemented yet."
|
|
)
|
|
return safe_load_file(checkpoint_file)
|
|
else:
|
|
return torch.load(checkpoint_file, map_location=torch.device("cpu"))
|
|
|
|
|
|
def load_state_dict_into_model(
|
|
model: nn.Module, state_dict: torch.Tensor, missing_keys: List, strict: bool = False, load_sub_module: bool = True
|
|
):
|
|
r"""Copies parameters and buffers from :attr:`state_dict` into
|
|
this module and its descendants.
|
|
|
|
Args:
|
|
state_dict (dict): a dict containing parameters and
|
|
persistent buffers.
|
|
"""
|
|
if not isinstance(state_dict, Mapping):
|
|
raise TypeError("Expected state_dict to be dict-like, got {}.".format(type(state_dict)))
|
|
|
|
unexpected_keys: List[str] = []
|
|
sub_missing_keys: List[str] = []
|
|
error_msgs: List[str] = []
|
|
|
|
# copy state_dict so _load_from_state_dict can modify it
|
|
metadata = getattr(state_dict, "_metadata", None)
|
|
state_dict = OrderedDict(state_dict)
|
|
if metadata is not None:
|
|
state_dict._metadata = metadata
|
|
|
|
def load(module: nn.Module, state_dict, prefix="", load_sub_module: bool = True):
|
|
local_metadata = {} if metadata is None else metadata.get(prefix[:-1], {})
|
|
args = (state_dict, prefix, local_metadata, True, sub_missing_keys, [], error_msgs)
|
|
# Parameters of module and children will start with prefix. We can exit early if there are none in this
|
|
# state_dict
|
|
if len([key for key in state_dict if key.startswith(prefix)]) > 0:
|
|
module._load_from_state_dict(*args)
|
|
if load_sub_module:
|
|
for name, child in module._modules.items():
|
|
if child is not None:
|
|
load(child, state_dict, prefix + name + ".")
|
|
|
|
load(model, state_dict, "", load_sub_module)
|
|
del load
|
|
|
|
missing_keys = missing_keys.append(sub_missing_keys)
|
|
|
|
if strict:
|
|
if len(unexpected_keys) > 0:
|
|
error_msgs = "Unexpected key(s) in state_dict: {}. ".format(
|
|
", ".join('"{}"'.format(k) for k in unexpected_keys)
|
|
)
|
|
raise RuntimeError(
|
|
"Error(s) in loading state_dict for {}:\n\t{}".format(model.__class__.__name__, "\n\t".join(error_msgs))
|
|
)
|
|
|
|
|
|
def load_param_groups_into_optimizer(optimizer: Optimizer, param_group_path: str) -> dict:
|
|
"""
|
|
Load information of param_groups into an initialized optimizer.
|
|
"""
|
|
|
|
# Load list of param_groups from given file path.
|
|
# The params in saved_groups are in the form of integer indices.
|
|
saved_groups = torch.load(param_group_path, map_location=torch.device("cpu"))
|
|
if not isinstance(saved_groups, List):
|
|
raise ValueError(f"The param_groups saved at {param_group_path} is not of List type")
|
|
|
|
# The params in param_groups are in the form of pytorch tensors.
|
|
# For more details, please view source code of Optimizer class in pytorch.
|
|
param_groups = optimizer.param_groups
|
|
|
|
# Check the compatibility of saved_groups and param_groups.
|
|
if len(param_groups) != len(saved_groups):
|
|
raise ValueError("loaded state dict has a different number of original parameter groups")
|
|
param_lens = (len(g["params"]) for g in param_groups)
|
|
saved_lens = (len(g["params"]) for g in saved_groups)
|
|
if any(p_len != s_len for p_len, s_len in zip(param_lens, saved_lens)):
|
|
raise ValueError(
|
|
"loaded state dict contains a parameter group " "that doesn't match the size of optimizer's group"
|
|
)
|
|
|
|
# Creating mapping from id to parameters.
|
|
id_map = {
|
|
old_id: p
|
|
for old_id, p in zip(
|
|
chain.from_iterable((g["params"] for g in saved_groups)),
|
|
chain.from_iterable((g["params"] for g in param_groups)),
|
|
)
|
|
}
|
|
|
|
# Update parameter groups, setting their 'params' value.
|
|
def update_group(group, new_group):
|
|
new_group["params"] = group["params"]
|
|
return new_group
|
|
|
|
updated_groups = [update_group(g, ng) for g, ng in zip(param_groups, saved_groups)]
|
|
|
|
optimizer.__dict__.update({"param_groups": updated_groups})
|
|
return id_map
|
|
|
|
|
|
def load_states_into_optimizer(optimizer: Optimizer, state_dict: dict, id_map: dict, strict: bool = False):
|
|
r"""Copies states from `state_dict` into an Optimizer object.
|
|
|
|
Args:
|
|
optimizer(Optimizer): An initialized Optimizer object to be loaded
|
|
state_dict(dict): A mapping from tensor index (an integer)
|
|
to its states to be loaded (a mapping from state name to a tensor).
|
|
id_map(dict): A mapping from tensor index (an integer)
|
|
to its corresponding parameter (a tensor) whose states will be updated.
|
|
strict(bool, optional): If set to True, only load the parameters with its id in id_map. Defaults to False.
|
|
"""
|
|
|
|
# Ensure that the keys of state_dict are integers.
|
|
state_dict = {int(k): v for k, v in state_dict.items()}
|
|
|
|
def cast(param, value, key=None):
|
|
r"""Make a deep copy of value, casting all tensors to device of param."""
|
|
if isinstance(value, torch.Tensor):
|
|
# Floating-point types are a bit special here. They are the only ones
|
|
# that are assumed to always match the type of params.
|
|
# Make sure state['step'] is not casted https://github.com/pytorch/pytorch/issues/74424
|
|
if key != "step":
|
|
if param.is_floating_point():
|
|
value = value.to(param.dtype)
|
|
value = value.to(param.device)
|
|
return value
|
|
elif isinstance(value, dict):
|
|
return {k: cast(param, v, key=k) for k, v in value.items()}
|
|
elif isinstance(value, container_abcs.Iterable):
|
|
return type(value)(cast(param, v) for v in value)
|
|
else:
|
|
return value
|
|
|
|
# Copy state assigned to params (and cast tensors to appropriate types).
|
|
# State that is not assigned to params is copied as is (needed for
|
|
# backward compatibility).
|
|
new_states = defaultdict(dict)
|
|
for k, v in state_dict.items():
|
|
if k in id_map:
|
|
param = id_map[k]
|
|
new_states[param] = cast(param, v)
|
|
elif not strict:
|
|
new_states[k] = v
|
|
|
|
optimizer.state.update(new_states)
|
|
|
|
|
|
def sharded_optimizer_loading_epilogue(optimizer: Optimizer):
|
|
r"""Do the cleaning up work after state_dict has been loaded into optimizer
|
|
|
|
Args:
|
|
optimizer(Optimizer): An optimizer object whose state has just been loaded.
|
|
"""
|
|
|
|
# Do the cleaning up as in src code of Pytorch.
|
|
if Version(torch.__version__) >= Version("2.0.0"):
|
|
optimizer._patch_step_function() # To support multiprocessing pickle/unpickle
|
|
else:
|
|
optimizer._hook_for_profile() # To support multiprocessing pickle/unpickle.
|
|
optimizer.defaults.setdefault("differentiable", False)
|
|
|
|
|
|
def has_index_file(checkpoint_path: str) -> Tuple[bool, Optional[Path]]:
|
|
"""
|
|
Check whether the checkpoint has an index file.
|
|
|
|
Args:
|
|
checkpoint_path (str): path to the checkpoint.
|
|
|
|
Returns:
|
|
Tuple[bool, Optional[Path]]: a tuple of (has_index_file, index_file_path)
|
|
"""
|
|
checkpoint_path = Path(checkpoint_path)
|
|
if checkpoint_path.is_file():
|
|
# check if it is .index.json
|
|
reg = re.compile("(.*?).index((\..*)?).json")
|
|
if reg.fullmatch(checkpoint_path.name) is not None:
|
|
return True, checkpoint_path
|
|
else:
|
|
return False, None
|
|
elif checkpoint_path.is_dir():
|
|
# check if there is only one a file ending with .index.json in this directory
|
|
index_files = list(checkpoint_path.glob("*.index.*json"))
|
|
|
|
# if we found a .index.json file, make sure there is only one
|
|
if len(index_files) > 0:
|
|
assert (
|
|
len(index_files) == 1
|
|
), f"Expected to find one .index.json file in {checkpoint_path}, but found {len(index_files)}"
|
|
|
|
if len(index_files) == 1:
|
|
return True, index_files[0]
|
|
else:
|
|
return False, None
|
|
else:
|
|
raise RuntimeError(f"Invalid checkpoint path {checkpoint_path}. Expected a file or a directory.")
|
|
|
|
|
|
def load_state_dict(checkpoint_file_path: Path):
|
|
"""
|
|
Load state dict from checkpoint.
|
|
|
|
Args:
|
|
checkpoint_file_path (Path): path to the checkpoint file.
|
|
|
|
Returns:
|
|
dict: state dict.
|
|
"""
|
|
|
|
assert not is_dtensor_checkpoint(
|
|
checkpoint_file_path
|
|
), f"Cannot load state dict from dtensor checkpoint {checkpoint_file_path}, you should convert the distributed tensors to gathered tensors with our CLI offline."
|
|
|
|
if is_safetensor_checkpoint(checkpoint_file_path):
|
|
assert (
|
|
is_safetensors_available()
|
|
), f"Cannot load state dict from safetensor checkpoint {checkpoint_file_path}, because safetensors is not available. Please install safetensors first with pip install safetensors."
|
|
# load with safetensors
|
|
from safetensors import safe_open
|
|
|
|
state_dict = {}
|
|
with safe_open(checkpoint_file_path, framework="pt", device="cpu") as f:
|
|
for k in f.keys():
|
|
state_dict[k] = f.get_tensor(k)
|
|
return state_dict
|
|
|
|
else:
|
|
# load with torch
|
|
return torch.load(checkpoint_file_path, map_location=torch.device("cpu"))
|
|
|
|
|
|
def add_prefix(weights_name: str, prefix: Optional[str] = None) -> str:
|
|
if prefix is not None and len(prefix) > 0:
|
|
splits = weights_name.split(".")
|
|
splits = splits[:-1] + [prefix] + splits[-1:]
|
|
weights_name = ".".join(splits)
|
|
|
|
return weights_name
|
|
|
|
|
|
def get_model_base_filenames(prefix: str = None, use_safetensors: bool = False):
|
|
"""
|
|
generate base model weight filenames
|
|
"""
|
|
weights_name = SAFE_WEIGHTS_NAME if use_safetensors else WEIGHTS_NAME
|
|
weights_name = add_prefix(weights_name, prefix)
|
|
|
|
save_index_file = SAFE_WEIGHTS_INDEX_NAME if use_safetensors else WEIGHTS_INDEX_NAME
|
|
save_index_file = add_prefix(save_index_file, prefix)
|
|
|
|
return weights_name, save_index_file
|
|
|
|
|
|
def get_optimizer_base_filenames(prefix: str = None):
|
|
"""
|
|
generate base optimizer state filenames
|
|
"""
|
|
states_name = STATES_NAME
|
|
states_name = add_prefix(states_name, prefix)
|
|
|
|
save_index_file = STATES_INDEX_NAME
|
|
save_index_file = add_prefix(save_index_file, prefix)
|
|
|
|
param_group_file = GROUP_FILE_NAME
|
|
param_group_file = add_prefix(param_group_file, prefix)
|
|
|
|
return states_name, save_index_file, param_group_file
|
|
|
|
|
|
def get_shard_filename(weights_name: str, idx: int):
|
|
"""
|
|
get shard file name
|
|
"""
|
|
shard_file = weights_name.replace(".bin", f"-{idx+1:05d}.bin")
|
|
shard_file = shard_file.replace(".safetensors", f"-{idx+1:05d}.safetensors")
|
|
return shard_file
|