You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ColossalAI/tests/test_infer/test_inference_engine.py

84 lines
2.6 KiB

import random
import numpy as np
import pytest
import torch
import transformers
from transformers import AutoTokenizer, GenerationConfig
import colossalai
from colossalai.inference.config import InferenceConfig
from colossalai.inference.core.engine import InferenceEngine
from colossalai.testing import rerun_if_address_is_in_use, spawn
def setup_seed(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
def check_inference_engine(test_cai=False):
setup_seed(20)
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/llama-tokenizer")
model = transformers.LlamaForCausalLM(
transformers.LlamaConfig(
vocab_size=50000, hidden_size=512, intermediate_size=1536, num_attention_heads=4, num_hidden_layers=16
)
).cuda()
model = model.eval()
inputs = [
"介绍一下今天的北京,比如故宫,天安门,长城或者其他的一些景点,",
"介绍一下武汉,",
]
output_len = 38
do_sample = True
top_p = 0.5
top_k = 50
if test_cai:
inference_config = InferenceConfig(max_output_len=output_len)
inference_engine = InferenceEngine(model, tokenizer, inference_config, verbose=True)
inference_engine.add_request(prompts=inputs)
assert inference_engine.request_handler._has_waiting()
generation_config = GenerationConfig(do_sample=do_sample, top_p=top_p, top_k=top_k)
outputs = inference_engine.generate(generation_config)
else:
tokenizer.pad_token = tokenizer.eos_token
tokenizer.pad_token_id = tokenizer.eos_token_id
inputs = tokenizer.batch_encode_plus(inputs, padding=True, return_tensors="pt")["input_ids"]
inputs = inputs.cuda()
generation_config = GenerationConfig(
do_sample=do_sample,
top_p=top_p,
top_k=top_k,
pad_token_id=tokenizer.pad_token_id,
max_new_tokens=output_len,
)
outputs = model.generate(inputs, generation_config=generation_config)
outputs = tokenizer.batch_decode(outputs, skip_special_tokens=True)
return outputs
def run_dist(rank, world_size, port):
colossalai.launch(config={}, rank=rank, world_size=world_size, port=port, host="localhost")
cai_outputs = check_inference_engine(True)
transformer_outputs = check_inference_engine(False)
for s1, s2 in zip(cai_outputs, transformer_outputs):
assert s1 == s2
@pytest.mark.dist
@rerun_if_address_is_in_use()
def test_inference_engine():
spawn(run_dist, 1)
if __name__ == "__main__":
test_inference_engine()