ColossalAI/tests/components_to_test/simple_net.py

53 lines
1.5 KiB
Python

import torch
import torch.nn as nn
from colossalai.nn import CheckpointModule
from .utils.dummy_data_generator import DummyDataGenerator
from .registry import non_distributed_component_funcs
from colossalai.utils.cuda import get_current_device
class SimpleNet(CheckpointModule):
"""
In this no-leaf module, it has subordinate nn.modules and a nn.Parameter.
"""
def __init__(self, checkpoint=False) -> None:
super().__init__(checkpoint=checkpoint)
self.embed = nn.Embedding(20, 4)
self.proj1 = nn.Linear(4, 8)
self.ln1 = nn.LayerNorm(8)
self.proj2 = nn.Linear(8, 4)
self.ln2 = nn.LayerNorm(4)
self.classifier = nn.Linear(4, 4)
def forward(self, x):
x = self.embed(x)
x = self.proj1(x)
x = self.ln1(x)
x = self.proj2(x)
x = self.ln2(x)
x = self.classifier(x)
return x
class DummyDataLoader(DummyDataGenerator):
def generate(self):
data = torch.randint(low=0, high=20, size=(16,), device=get_current_device())
label = torch.randint(low=0, high=2, size=(16,), device=get_current_device())
return data, label
@non_distributed_component_funcs.register(name='simple_net')
def get_training_components():
def model_builder(checkpoint=True):
return SimpleNet(checkpoint)
trainloader = DummyDataLoader()
testloader = DummyDataLoader()
criterion = torch.nn.CrossEntropyLoss()
from colossalai.nn.optimizer import HybridAdam
return model_builder, trainloader, testloader, HybridAdam, criterion