mirror of https://github.com/hpcaitech/ColossalAI
152 lines
6.0 KiB
Python
152 lines
6.0 KiB
Python
from typing import Dict, Union
|
|
|
|
import torch.nn as nn
|
|
|
|
from colossalai.shardformer.layer import FusedRMSNorm, Linear1D_Col, Linear1D_Row, VocabParallelEmbedding1D
|
|
|
|
from .basepolicy import ModulePolicyDescription, Policy, SubModuleReplacementDescription
|
|
|
|
__all__ = ['LlamaPolicy', 'LlamaForCausalLMPolicy', 'LlamaForSequenceClassificationPolicy']
|
|
|
|
|
|
class LlamaPolicy(Policy):
|
|
|
|
def config_sanity_check(self):
|
|
pass
|
|
|
|
def preprocess(self):
|
|
# Resize embedding
|
|
vocab_size = self.model.config.vocab_size
|
|
world_size = self.shard_config.tensor_parallel_size
|
|
|
|
if vocab_size % world_size != 0:
|
|
new_vocab_size = vocab_size + world_size - vocab_size % world_size
|
|
self.model.resize_token_embeddings(new_vocab_size)
|
|
|
|
return self.model
|
|
|
|
def module_policy(self) -> Dict[Union[str, nn.Module], ModulePolicyDescription]:
|
|
from transformers.models.llama.modeling_llama import LlamaDecoderLayer, LlamaModel
|
|
|
|
return {
|
|
LlamaDecoderLayer:
|
|
ModulePolicyDescription(
|
|
attribute_replacement={
|
|
"self_attn.hidden_size":
|
|
self.model.config.hidden_size // self.shard_config.tensor_parallel_size,
|
|
"self_attn.num_heads":
|
|
self.model.config.num_attention_heads // self.shard_config.tensor_parallel_size,
|
|
},
|
|
param_replacement=[],
|
|
sub_module_replacement=[
|
|
SubModuleReplacementDescription(
|
|
suffix="self_attn.q_proj",
|
|
target_module=Linear1D_Col,
|
|
),
|
|
SubModuleReplacementDescription(
|
|
suffix="self_attn.k_proj",
|
|
target_module=Linear1D_Col,
|
|
),
|
|
SubModuleReplacementDescription(
|
|
suffix="self_attn.v_proj",
|
|
target_module=Linear1D_Col,
|
|
),
|
|
SubModuleReplacementDescription(
|
|
suffix="self_attn.o_proj",
|
|
target_module=Linear1D_Row,
|
|
),
|
|
SubModuleReplacementDescription(
|
|
suffix="mlp.gate_proj",
|
|
target_module=Linear1D_Col,
|
|
),
|
|
SubModuleReplacementDescription(
|
|
suffix="mlp.up_proj",
|
|
target_module=Linear1D_Col,
|
|
),
|
|
SubModuleReplacementDescription(
|
|
suffix="mlp.down_proj",
|
|
target_module=Linear1D_Row,
|
|
)
|
|
],
|
|
),
|
|
LlamaModel:
|
|
ModulePolicyDescription(attribute_replacement={},
|
|
param_replacement=[],
|
|
sub_module_replacement=[
|
|
SubModuleReplacementDescription(
|
|
suffix="embed_tokens",
|
|
target_module=VocabParallelEmbedding1D,
|
|
)
|
|
])
|
|
}
|
|
|
|
# optimization configuration
|
|
if self.shard_config.enable_fused_normalization:
|
|
base_policy[LlamaDecoderLayer].sub_module_replacement.extend([
|
|
SubModuleReplacementDescription(
|
|
suffix="input_layernorm",
|
|
target_module=FusedRMSNorm,
|
|
),
|
|
SubModuleReplacementDescription(
|
|
suffix="post_attention_layernorm",
|
|
target_module=FusedRMSNorm,
|
|
)
|
|
])
|
|
|
|
base_policy[LlamaModel].sub_module_replacement.append(
|
|
SubModuleReplacementDescription(
|
|
suffix="norm",
|
|
target_module=FusedRMSNorm,
|
|
))
|
|
|
|
return base_policy
|
|
|
|
def new_model_class(self):
|
|
return None
|
|
|
|
def postprocess(self):
|
|
return self.model
|
|
|
|
|
|
class LlamaForCausalLMPolicy(LlamaPolicy):
|
|
|
|
def module_policy(self):
|
|
from transformers import LlamaForCausalLM
|
|
|
|
policy = super().module_policy()
|
|
# add a new item for casual lm
|
|
new_item = {
|
|
LlamaForCausalLM:
|
|
ModulePolicyDescription(attribute_replacement={},
|
|
param_replacement=[],
|
|
sub_module_replacement=[
|
|
SubModuleReplacementDescription(suffix="lm_head",
|
|
target_module=Linear1D_Col,
|
|
kwargs=dict(gather_output=True))
|
|
])
|
|
}
|
|
policy.update(new_item)
|
|
return policy
|
|
|
|
|
|
class LlamaForSequenceClassificationPolicy(LlamaPolicy):
|
|
|
|
def module_policy(self):
|
|
from transformers import LlamaForSequenceClassification
|
|
|
|
policy = super().module_policy()
|
|
|
|
# add a new item for sequence classification
|
|
new_item = {
|
|
LlamaForSequenceClassification:
|
|
ModulePolicyDescription(attribute_replacement={},
|
|
param_replacement=[],
|
|
sub_module_replacement=[
|
|
SubModuleReplacementDescription(suffix="score",
|
|
target_module=Linear1D_Col,
|
|
kwargs=dict(gather_output=True))
|
|
])
|
|
}
|
|
policy.update(new_item)
|
|
return policy
|