ColossalAI/colossalai/shardformer/policies/basepolicy.py

176 lines
5.8 KiB
Python

# part of code modified from https://github.com/tunib-ai/parallelformers
from abc import ABC, abstractmethod
from dataclasses import dataclass
from typing import Any, Callable, Dict, List, Type, Union
import torch.nn as nn
from ..shard.shard_config import ShardConfig
__all__ = ["ParallelModule", "SubModuleReplacementDescription", "ModulePolicyDescription", "Policy"]
class ParallelModule():
def __init__(self):
pass
@dataclass
class SubModuleReplacementDescription:
r"""
Describe how a submodule will be replaced
suffix (str): used to get the submodule object
target_module (ParallelModule): specifies the module class used to replace to submodule
kwargs (Dict[str, Any]): the dictionary used to pass extra arguments to the `ParallelModule.from_native_module` method.
"""
suffix: str
target_module: ParallelModule
kwargs: Dict[str, Any] = None
ignore_if_not_exist: bool = False
@dataclass
class ModulePolicyDescription:
r"""
Describe how the attributes and parameters will be transformed in a policy
attribute_replacement (Dict[str, Any]): key is the attribute name, value is the attribute value after sharding
param_replacement (List[Callable]): a list of functions to perform in-place param replacement. The function
must receive two arguments: module, process_group. One example is
```python
def example_replace_weight(module: torch.nn.Module, process_group):
weight = module.weight
new_weight = shard_rowwise(weight, process_group)
module.weight = torch.nn.Parameter(new_weight)
```
sub_module_replacement: each element in the list is a ParamReplacementDescription object which specifies
the module to be replaced and the target module used to replacement
"""
attribute_replacement: Dict[str, Any]
param_replacement: List[Callable]
sub_module_replacement: List[SubModuleReplacementDescription]
method_replacement: List[Callable] = None
class Policy(ABC):
r"""
The base class for all the policies
For each different model, it should have a different policy class, like BertPolicy for Bert Model
or OPTPolicy for OPT model.
AutoPolicy:
Shardformer already defined some policies for huggingface model, just set ``custom_policy`` = None
to use the auto policy. In shardformer autopolicy, we define a base policy for one type model,
like BertPolicy, and for each different Bert modle in huggingface like, BertForMaskedLM,
BertForSequenceClassification, etc., for each different Bert model we difine different policy class
and overwrite the method like ``inject_policy`` to modify the forward and backward process.
CustomPolicy:
If you want to define your own policy, you can set ``custom_policy`` = CustomPolicy, and overwrite
all the methods in ``Policy`` class. You can refer to any policy we defined like the ``BertPolicy``
class for the example.
"""
def __init__(self) -> None:
self.shard_config = None
self.model = None
self.shard_config = None
def set_model(self, model: nn.Module) -> None:
r"""
Set model as an attribute of the Policy object so that we can access the model's attributes.
Args:
model (:class:`nn.Module`): The model to be perform
"""
self.model = model
def set_shard_config(self, shard_config: ShardConfig) -> None:
r"""
Set shard config as an attribute of the Policy object.
Args:
shard_config (:class:`ShardConfig`): The shard config to be perform
"""
self.shard_config = shard_config
self.config_sanity_check()
@abstractmethod
def config_sanity_check(self):
"""
Check if the shard config is valid for the model. Raise an exception if the config is invalid.
"""
pass
@abstractmethod
def preprocess(self) -> nn.Module:
r"""
Perform some preprocessing of the model, like reshaping the embedding layer
"""
pass
@abstractmethod
def module_policy(self) -> Dict[Union[str, nn.Module], ModulePolicyDescription]:
r"""
Return the dict for the modify policy, the key is the original layer class and the value is the
argument for the modify layer
Return:
Dict for the modify policy,
::
{
origin layer class1 (nn.Module): ModulePolicyDescription(
attribute_replacement = {
"attribute1": value1,
"attribute2": value2,
...
},
param_replacement = [
function1,
function2,
...
],
sub_module_replacement = [
`SubModuleReplacementDescription` description1,
`SubModuleReplacementDescription` description2,
...
]
),
origin layer class2 (nn.Module): ModulePolicyDescription(
...
),
...
}
"""
pass
@abstractmethod
def new_model_class(self) -> Union[Type[nn.Module], None]:
r"""
Return the new model class for the new model, None means no need to modify the model class
Return:
New model class
E.g.
```
return BertModel_
```
"""
pass
@abstractmethod
def postprocess(self) -> nn.Module:
r"""
Perform some postprocessing of the model, like binding the weight of embedding layer with
the classifier layer
"""
pass