ColossalAI/applications/Chat/examples/test_ci.sh

161 lines
5.7 KiB
Bash
Executable File

#!/usr/bin/env bash
set_n_least_used_CUDA_VISIBLE_DEVICES() {
local n=${1:-"9999"}
echo "GPU Memory Usage:"
local FIRST_N_GPU_IDS=$(nvidia-smi --query-gpu=memory.used --format=csv |
tail -n +2 |
nl -v 0 |
tee /dev/tty |
sort -g -k 2 |
awk '{print $1}' |
head -n $n)
export CUDA_VISIBLE_DEVICES=$(echo $FIRST_N_GPU_IDS | sed 's/ /,/g')
echo "Now CUDA_VISIBLE_DEVICES is set to:"
echo "CUDA_VISIBLE_DEVICES=$CUDA_VISIBLE_DEVICES"
}
set_n_least_used_CUDA_VISIBLE_DEVICES 4
set -xue
if [ -z "$SFT_DATASET" ]; then
echo "Please set \$SFT_DATASET to the path to sft dataset."
exit 1
fi
if [ -z "$PROMPT_PATH" ]; then
echo "Please set \$PROMPT_PATH to the path to prompts csv."
exit 1
fi
if [ -z "$PRETRAIN_DATASET" ]; then
echo "Please set \$PRETRAIN_DATASET to the path to alpaca data."
exit 1
fi
BASE=$(realpath $(dirname $0))
export OMP_NUM_THREADS=8
# install requirements
pip install -r ${BASE}/requirements.txt
wandb init -m offline
# FIXME: This is a hack to skip tests that are not working
# - gpt2-ddp: RuntimeError: one of the variables needed for gradient computation has been modified by an inplace operation
# - llama-*: These tests can be passed locally, skipped for long execution time
SKIPPED_TESTS=(
"gpt2-ddp"
"llama-ddp"
"llama-colossalai_gemini"
"llama-colossalai_zero2"
)
# These tests are quick and do not have any dependencies
for model in 'gpt2' 'bloom' 'opt' 'llama'; do
for strategy in 'ddp' 'colossalai_gemini' 'colossalai_zero2'; do
if [[ " ${SKIPPED_TESTS[*]} " =~ " ${model}-${strategy} " ]]; then
echo "[Test]: Skipped $model-$strategy"
continue
fi
torchrun --standalone --nproc_per_node=2 ${BASE}/train_prompts.py \
--prompt_dataset $PROMPT_PATH --pretrain_dataset $PRETRAIN_DATASET \
--strategy $strategy --model $model \
--num_episodes 1 --num_collect_steps 2 --num_update_steps 1 \
--train_batch_size 2 --lora_rank 4
done
done
# train sft
torchrun --standalone --nproc_per_node=4 ${BASE}/train_sft.py --pretrain 'bigscience/bloom-560m' \
--model 'bloom' --strategy colossalai_zero2 --lora_rank 4 \
--dataset $SFT_DATASET --max_datasets_size 512 --max_epochs 1 \
--save_path ${BASE}/output
rm -rf ${BASE}/output
torchrun --standalone --nproc_per_node=4 ${BASE}/train_sft.py --pretrain 'gpt2' \
--model 'gpt2' --strategy colossalai_zero2 \
--dataset $SFT_DATASET --max_datasets_size 512 --max_epochs 1 \
--save_path ${BASE}/output
rm -rf ${BASE}/output
torchrun --standalone --nproc_per_node=4 ${BASE}/train_sft.py --pretrain 'facebook/opt-350m' \
--model 'opt' --strategy colossalai_zero2 --lora_rank 4 \
--dataset $SFT_DATASET --max_datasets_size 512 --max_epochs 1 \
--save_path ${BASE}/output
rm -rf ${BASE}/output
torchrun --standalone --nproc_per_node=4 ${BASE}/train_sft.py --pretrain 'gpt2' \
--model 'gpt2' --strategy ddp --lora_rank 4 \
--dataset $SFT_DATASET --max_datasets_size 512 --max_epochs 1 \
--save_path ${BASE}/output
rm -rf ${BASE}/output
# train rm
torchrun --standalone --nproc_per_node=2 ${BASE}/train_reward_model.py \
--pretrain 'facebook/opt-350m' --model 'opt' \
--strategy colossalai_zero2 --loss_fn 'log_sig' \
--dataset 'Anthropic/hh-rlhf' --subset 'harmless-base' \
--test True --lora_rank 0 \
--save_path ${BASE}/rm_ckpt_opt.pt
torchrun --standalone --nproc_per_node=2 ${BASE}/train_reward_model.py \
--pretrain 'gpt2' --model 'gpt2' \
--strategy colossalai_zero2 --loss_fn 'log_exp' \
--dataset 'Dahoas/rm-static' \
--test True --lora_rank 0 \
--save_path ${BASE}/rm_ckpt_gpt.pt
torchrun --standalone --nproc_per_node=2 ${BASE}/train_reward_model.py \
--pretrain 'gpt2' --model 'gpt2' \
--strategy ddp --loss_fn 'log_exp' \
--dataset 'Dahoas/rm-static' \
--test True --lora_rank 4 \
--save_path ${BASE}/rm_ckpt.pt
rm -rf ${BASE}/rm_ckpt.pt
torchrun --standalone --nproc_per_node=2 ${BASE}/train_reward_model.py \
--pretrain 'bigscience/bloom-560m' --model 'bloom' \
--strategy colossalai_zero2 --loss_fn 'log_sig' \
--dataset 'Anthropic/hh-rlhf' --subset 'harmless-base' \
--test True --lora_rank 4 \
--save_path ${BASE}/rm_ckpt.pt
rm -rf ${BASE}/rm_ckpt.pt
# train rl
torchrun --standalone --nproc_per_node=2 ${BASE}/train_prompts.py \
--prompt_dataset $PROMPT_PATH --pretrain_dataset $PRETRAIN_DATASET \
--strategy colossalai_zero2 --num_episodes 1 \
--num_collect_steps 2 --num_update_steps 1 --train_batch_size 2 \
--pretrain 'facebook/opt-350m' --model opt \
--rm_pretrain 'facebook/opt-350m' \
--rm_path ${BASE}/rm_ckpt_opt.pt \
--save_path ${BASE}/actor_checkpoint_prompts.pt
rm -rf ${BASE}/rm_ckpt_opt.pt
torchrun --standalone --nproc_per_node=2 ${BASE}/train_prompts.py \
--prompt_dataset $PROMPT_PATH --pretrain_dataset $PRETRAIN_DATASET \
--strategy colossalai_zero2 --num_episodes 1 \
--num_collect_steps 2 --num_update_steps 1 --train_batch_size 2 \
--pretrain 'gpt2' --model gpt2 \
--rm_pretrain 'gpt2' \
--rm_path ${BASE}/rm_ckpt_gpt.pt \
--save_path ${BASE}/actor_checkpoint_prompts.pt
torchrun --standalone --nproc_per_node=2 ${BASE}/train_prompts.py \
--prompt_dataset $PROMPT_PATH --pretrain_dataset $PRETRAIN_DATASET \
--strategy colossalai_gemini --num_episodes 1 \
--num_collect_steps 2 --num_update_steps 1 --train_batch_size 2 \
--pretrain 'gpt2' --model gpt2 \
--rm_pretrain 'gpt2' \
--rm_path ${BASE}/rm_ckpt_gpt.pt \
--save_path ${BASE}/actor_checkpoint_prompts.pt
rm -rf ${BASE}/rm_ckpt_gpt.pt
rm -rf ${BASE}/actor_checkpoint_prompts.pt
# 3080 doesn't support P2P, skip this test
# cd ${BASE}/ray && bash test_ci.sh && cd ${BASE}