mirror of https://github.com/hpcaitech/ColossalAI
307 lines
14 KiB
Python
307 lines
14 KiB
Python
import logging
|
|
import os
|
|
import warnings
|
|
from pathlib import Path
|
|
from typing import Callable, Iterator, List, Optional, Tuple, Union
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
from torch import Tensor
|
|
from torch.optim import Optimizer
|
|
from torch.optim.lr_scheduler import _LRScheduler as LRScheduler
|
|
from torch.utils.data import DataLoader
|
|
|
|
from colossalai.checkpoint_io import CheckpointIndexFile, CheckpointIO, GeneralCheckpointIO
|
|
from colossalai.checkpoint_io.utils import get_base_filenames, get_shard_filename, save_state_dict
|
|
from colossalai.cluster import DistCoordinator
|
|
from colossalai.interface import ModelWrapper, OptimizerWrapper
|
|
from colossalai.utils import get_current_device
|
|
from colossalai.zero import GeminiDDP, zero_model_wrapper, zero_optim_wrapper
|
|
from colossalai.zero.gemini.memory_tracer import MemStats
|
|
|
|
from .dp_plugin_base import DPPluginBase
|
|
|
|
__all__ = ['GeminiPlugin']
|
|
|
|
SUPPORTED_PRECISION = ['fp16', 'bf16']
|
|
PRECISION_STR_TO_DTYPE = {'fp16': torch.half, 'bf16': torch.bfloat16}
|
|
|
|
|
|
class GeminiCheckpointIO(GeneralCheckpointIO):
|
|
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.coordinator = DistCoordinator()
|
|
|
|
def load_unsharded_model(self, model: GeminiDDP, checkpoint: str, strict: bool = True):
|
|
"""
|
|
Load model from checkpoint with automatic unwrapping.
|
|
"""
|
|
# the model should be unwrapped in self.load_model via ModelWrapper.unwrap
|
|
return super().load_unsharded_model(model, checkpoint, strict=strict)
|
|
|
|
def save_unsharded_model(self, model: GeminiDDP, checkpoint: str, gather_dtensor: bool, use_safetensors: bool):
|
|
"""
|
|
Save model to checkpoint but only on master process.
|
|
"""
|
|
# the model should be unwrapped in self.load_model via ModelWrapper.unwrap
|
|
# as there is communication when get state dict, this must be called on all processes
|
|
state_dict = model.state_dict(only_rank_0=True)
|
|
if self.coordinator.is_master():
|
|
save_state_dict(state_dict, checkpoint, use_safetensors)
|
|
|
|
def save_unsharded_optimizer(self, optimizer: Optimizer, checkpoint: str, gather_dtensor: bool):
|
|
"""
|
|
Save optimizer to checkpoint but only on master process.
|
|
"""
|
|
# TODO(ver217): optimizer state dict is sharded
|
|
warnings.warn('GeminiPlugin does not support save full optimizer checkpoint now. Save it on every process.')
|
|
checkpoint = f'{checkpoint}.rank{self.coordinator.rank}'
|
|
super().save_unsharded_optimizer(optimizer, checkpoint, gather_dtensor)
|
|
|
|
def load_optimizer(self, optimizer: Optimizer, checkpoint: str):
|
|
warnings.warn(
|
|
'GeminiPlugin can only load optimizer checkpoint saved by itself with the same number of processes.')
|
|
checkpoint = f'{checkpoint}.rank{self.coordinator.rank}'
|
|
super().load_optimizer(optimizer, checkpoint)
|
|
|
|
def save_lr_scheduler(self, lr_scheduler: LRScheduler, checkpoint: str):
|
|
"""
|
|
Save model to checkpoint but only on master process.
|
|
"""
|
|
if self.coordinator.is_master():
|
|
super().save_lr_scheduler(lr_scheduler, checkpoint)
|
|
|
|
def save_sharded_model(self,
|
|
model: GeminiDDP,
|
|
checkpoint_path: str,
|
|
gather_dtensor: bool = False,
|
|
variant: Optional[str] = None,
|
|
max_shard_size: int = 1024,
|
|
use_safetensors: bool = False):
|
|
"""
|
|
Save sharded model
|
|
"""
|
|
state_dict_shard = model.state_dict_shard(max_shard_size=max_shard_size, only_rank_0=True, dtype=torch.float32)
|
|
weights_name, save_index_file = get_base_filenames(variant, use_safetensors)
|
|
total_size = 0
|
|
index_file = CheckpointIndexFile(checkpoint_path)
|
|
for idx, shard_pair in enumerate(state_dict_shard):
|
|
if not self.coordinator.is_master():
|
|
continue
|
|
shard = shard_pair[0]
|
|
shard_file = get_shard_filename(weights_name, idx)
|
|
total_size = total_size + shard_pair[1]
|
|
for key in shard.keys():
|
|
index_file.append_weight_map(key, shard_file)
|
|
|
|
checkpoint_file_path = os.path.join(checkpoint_path, shard_file)
|
|
save_state_dict(shard, checkpoint_file_path, use_safetensors)
|
|
|
|
index_file.append_meta_data("total_size", total_size)
|
|
index_file.write_index_file(save_index_file)
|
|
logging.info(f"The model is going to be split to checkpoint shards. "
|
|
f"You can find where each parameters has been saved in the "
|
|
f"index located at {save_index_file}.")
|
|
|
|
def load_sharded_model(self,
|
|
model: GeminiDDP,
|
|
checkpoint_index_file: Path,
|
|
strict: bool = False,
|
|
use_safetensors: bool = False):
|
|
"""
|
|
load shard model, load model from multiple files
|
|
"""
|
|
return super().load_sharded_model(model, checkpoint_index_file, strict, use_safetensors, load_sub_module=False)
|
|
|
|
|
|
class GeminiModel(ModelWrapper):
|
|
|
|
def __init__(self, module: nn.Module, gemini_config: dict, verbose: bool = False) -> None:
|
|
super().__init__(module)
|
|
self.module = zero_model_wrapper(module, zero_stage=3, gemini_config=gemini_config, verbose=verbose)
|
|
|
|
def unwrap(self):
|
|
# as save/load state dict is coupled with the GeminiDDP, we only return GeminiDDP model
|
|
return self.module
|
|
|
|
|
|
class GeminiOptimizer(OptimizerWrapper):
|
|
|
|
def __init__(self,
|
|
module: GeminiDDP,
|
|
optimizer: Optimizer,
|
|
zero_optim_config: dict,
|
|
optim_kwargs: dict,
|
|
verbose: bool = False) -> None:
|
|
optimizer = zero_optim_wrapper(module,
|
|
optimizer,
|
|
optim_config=zero_optim_config,
|
|
**optim_kwargs,
|
|
verbose=verbose)
|
|
super().__init__(optimizer)
|
|
|
|
def backward(self, loss: Tensor, *args, **kwargs):
|
|
self.optim.backward(loss)
|
|
|
|
def clip_grad_by_norm(self,
|
|
max_norm: Union[float, int],
|
|
norm_type: Union[float, int] = 2,
|
|
error_if_nonfinite: bool = False,
|
|
*args,
|
|
**kwargs) -> Tensor:
|
|
warnings.warn(f'Gemini controls grad clipping by itself, so you should not use clip_grad_by_norm')
|
|
|
|
def clip_grad_by_value(self, clip_value: float, *args, **kwargs) -> None:
|
|
raise NotImplementedError('Gemini does not support clip_grad_by_value')
|
|
|
|
|
|
class GeminiPlugin(DPPluginBase):
|
|
"""
|
|
Plugin for Gemini.
|
|
|
|
Example:
|
|
>>> from colossalai.booster import Booster
|
|
>>> from colossalai.booster.plugin import GeminiPlugin
|
|
>>>
|
|
>>> model, train_dataset, optimizer, criterion = ...
|
|
>>> plugin = GeminiPlugin()
|
|
|
|
>>> train_dataloader = plugin.prepare_dataloader(train_dataset, batch_size=8)
|
|
>>> booster = Booster(plugin=plugin)
|
|
>>> model, optimizer, train_dataloader, criterion = booster.boost(model, optimizer, train_dataloader, criterion)
|
|
|
|
Args:
|
|
device (torch.device): device to place the model.
|
|
placement_policy (str, optional): "cpu", "cuda", "auto". Defaults to "cpu".
|
|
precision (str, optional): precision. Support 'fp16' and 'bf16'. Defaults to 'fp16'.
|
|
pin_memory (bool, optional): use pin memory on CPU. Defaults to False.
|
|
force_outputs_fp32 (bool, optional): force outputs are fp32. Defaults to False.
|
|
strict_ddp_mode (bool, optional): use strict ddp mode (only use dp without other parallelism). Defaults to False.
|
|
search_range_mb (int, optional): chunk size searching range in MegaByte. Defaults to 32.
|
|
hidden_dim (int, optional): the hidden dimension of DNN.
|
|
Users can provide this argument to speed up searching.
|
|
If users do not know this argument before training, it is ok. We will use a default value 1024.
|
|
min_chunk_size_mb (float, optional): the minimum chunk size in MegaByte.
|
|
If the aggregate size of parameters is still smaller than the minimum chunk size,
|
|
all parameters will be compacted into one small chunk.
|
|
memstats (MemStats, optional) the memory statistics collector by a runtime memory tracer.
|
|
gpu_margin_mem_ratio (float, optional): The ratio of GPU remaining memory (after the first forward-backward)
|
|
which will be used when using hybrid CPU optimizer.
|
|
This argument is meaningless when `placement_policy` of `GeminiManager` is not "auto".
|
|
Defaults to 0.0.
|
|
initial_scale (float, optional): Initial scale used by DynamicGradScaler. Defaults to 2**32.
|
|
min_scale (float, optional): Min scale used by DynamicGradScaler. Defaults to 1.
|
|
growth_factor (float, optional): growth_factor used by DynamicGradScaler. Defaults to 2.
|
|
backoff_factor (float, optional): backoff_factor used by DynamicGradScaler. Defaults to 0.5.
|
|
growth_interval (float, optional): growth_interval used by DynamicGradScaler. Defaults to 1000.
|
|
hysteresis (float, optional): hysteresis used by DynamicGradScaler. Defaults to 2.
|
|
max_scale (int, optional): max_scale used by DynamicGradScaler. Defaults to 2**32.
|
|
max_norm (float, optional): max_norm used for `clip_grad_norm`. You should notice that you shall not do
|
|
clip_grad_norm by yourself when using ZeRO DDP. The ZeRO optimizer will take care of clip_grad_norm.
|
|
norm_type (float, optional): norm_type used for `clip_grad_norm`.
|
|
verbose (bool, optional): verbose mode. Debug info including chunk search result will be printed. Defaults to False.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
device: Optional[torch.device] = None,
|
|
placement_policy: str = "cpu",
|
|
precision: str = "fp16",
|
|
pin_memory: bool = False,
|
|
force_outputs_fp32: bool = False,
|
|
strict_ddp_mode: bool = False,
|
|
search_range_mb: int = 32,
|
|
hidden_dim: Optional[int] = None,
|
|
min_chunk_size_mb: float = 32,
|
|
memstats: Optional[MemStats] = None,
|
|
gpu_margin_mem_ratio: float = 0.0,
|
|
initial_scale: float = 2**32,
|
|
min_scale: float = 1,
|
|
growth_factor: float = 2,
|
|
backoff_factor: float = 0.5,
|
|
growth_interval: int = 1000,
|
|
hysteresis: int = 2,
|
|
max_scale: float = 2**32,
|
|
max_norm: float = 0.0,
|
|
norm_type: float = 2.0,
|
|
verbose: bool = False,
|
|
) -> None:
|
|
super().__init__()
|
|
assert precision in SUPPORTED_PRECISION, f'precision {precision} is not supported'
|
|
self.gemini_config = dict(
|
|
device=(device or get_current_device()),
|
|
placement_policy=placement_policy,
|
|
pin_memory=pin_memory,
|
|
force_outputs_fp32=force_outputs_fp32,
|
|
strict_ddp_mode=strict_ddp_mode,
|
|
search_range_mb=search_range_mb,
|
|
hidden_dim=hidden_dim,
|
|
min_chunk_size_mb=min_chunk_size_mb,
|
|
memstats=memstats,
|
|
mixed_precision=PRECISION_STR_TO_DTYPE[precision],
|
|
)
|
|
self.zero_optim_config = dict(gpu_margin_mem_ratio=gpu_margin_mem_ratio,)
|
|
self.optim_kwargs = dict(initial_scale=initial_scale,
|
|
growth_factor=growth_factor,
|
|
backoff_factor=backoff_factor,
|
|
growth_interval=growth_interval,
|
|
hysteresis=hysteresis,
|
|
min_scale=min_scale,
|
|
max_scale=max_scale,
|
|
max_norm=max_norm,
|
|
norm_type=norm_type)
|
|
self.verbose = verbose
|
|
|
|
def support_no_sync(self) -> bool:
|
|
return False
|
|
|
|
def control_precision(self) -> bool:
|
|
return True
|
|
|
|
def supported_precisions(self) -> List[str]:
|
|
return SUPPORTED_PRECISION
|
|
|
|
def control_device(self) -> bool:
|
|
return True
|
|
|
|
def supported_devices(self) -> List[str]:
|
|
return ['cuda']
|
|
|
|
def configure(
|
|
self,
|
|
model: nn.Module,
|
|
optimizer: Optimizer,
|
|
criterion: Callable = None,
|
|
dataloader: DataLoader = None,
|
|
lr_scheduler: LRScheduler = None,
|
|
) -> Tuple[Union[nn.Module, OptimizerWrapper, LRScheduler, DataLoader]]:
|
|
|
|
if not isinstance(model, ModelWrapper):
|
|
# convert model to sync bn
|
|
# FIXME(ver217): gemini does not support sync bn
|
|
# In torch/nn/modules/_functions.py, line 22, ``mean, invstd = torch.batch_norm_stats(input, eps)`` will get fp32 mean and invstd even though the input is fp16.
|
|
# This inconsistency of dtype will cause the error.
|
|
# We have two possible solutions:
|
|
# 1. keep batch norm always in fp32. This is hard for gemini, as it use chunks.
|
|
# 2. patch sync bn or write a new on. This is relatively easy, but we need to test it.
|
|
# model = nn.SyncBatchNorm.convert_sync_batchnorm(model, None)
|
|
|
|
# wrap the model with Gemini
|
|
model = GeminiModel(model, self.gemini_config, self.verbose)
|
|
|
|
if not isinstance(optimizer, OptimizerWrapper):
|
|
optimizer = GeminiOptimizer(model.unwrap(), optimizer, self.zero_optim_config, self.optim_kwargs,
|
|
self.verbose)
|
|
|
|
return model, optimizer, criterion, dataloader, lr_scheduler
|
|
|
|
def control_checkpoint_io(self) -> bool:
|
|
return True
|
|
|
|
def get_checkpoint_io(self) -> CheckpointIO:
|
|
return GeminiCheckpointIO()
|
|
|
|
def no_sync(self, model: nn.Module) -> Iterator[None]:
|
|
raise NotImplementedError
|