ColossalAI/colossalai/tensor/distspec.py

50 lines
1.7 KiB
Python

from enum import Enum
from typing import List, Optional
__all__ = ['replicate', 'shard']
class DistPlacementPattern(Enum):
REPLICATE = 'r'
SHARD = 's'
class _DistSpec:
def __init__(self, dist_placement_pattern: DistPlacementPattern, **meta_info):
"""_DistSpec, Distributed Specification
Args:
dist_placement_pattern (DistPlacementPattern): the pattern describing how tensors are distributed among processes.
The dist_placement_pattern is picked from a limited set, now including two patterns: replicate and shard.
process_group (Optional[ProcessGroup], optional): the process group contains processes. Defaults to None.
"""
self.placement = dist_placement_pattern
for k, v in meta_info.items():
setattr(self, k, v)
def __eq__(self, other: "_DistSpec") -> bool:
if dir(self) != dir(other):
return False
for attr in dir(self):
if not attr.startswith('__') and getattr(self, attr) != getattr(other, attr):
return False
return True
def __repr__(self) -> str:
res_list = ["DistSpec:"]
for attr in dir(self):
if not attr.startswith('__'):
res_list.append(f'\n\t{attr}: {str(getattr(self, attr))}')
return ''.join(res_list)
def replicate() -> _DistSpec:
return _DistSpec(DistPlacementPattern.REPLICATE)
def shard(dims: List[int], num_partitions: List[int]) -> _DistSpec:
assert isinstance(dims, list) and isinstance(num_partitions, list)
assert len(dims) == len(num_partitions)
return _DistSpec(DistPlacementPattern.SHARD, dims=tuple(dims), num_partitions=tuple(num_partitions))