ColossalAI/colossalai/tensor/colo_tensor.py

293 lines
11 KiB
Python

from .op_wrapper import _COLOSSAL_OPS
from .const import TensorType
from copy import copy
import torch
from functools import lru_cache
from colossalai.tensor import ColoTensorSpec
from colossalai.tensor import ProcessGroup, ReplicaSpec
from colossalai.tensor.dist_spec_mgr import DistSpecManager
from colossalai.tensor.distspec import _DistSpec, DistPlacementPattern
from typing import Optional, Set, Callable
@lru_cache(None)
def _get_my_nowrap_functions() -> Set[Callable]:
Tensor = torch.Tensor
return {
Tensor._base.__get__,
Tensor.grad.__get__,
Tensor._grad.__get__,
Tensor.data.__get__, # make .data returns torch.Tensor rather than ColoTensor
}
def _convert_output(output, colo_spec: ColoTensorSpec):
if type(output) == torch.Tensor:
return ColoTensor.from_torch_tensor(output, colo_spec)
elif isinstance(output, (list, tuple)):
return type(output)(_convert_output(o, colo_spec) for o in output)
else:
return output
def _get_spec_from_args(args, kwargs) -> ColoTensorSpec:
for elem in args:
if isinstance(elem, ColoTensor):
pg = elem.get_process_group()
dp = elem.dist_spec
return ColoTensorSpec(pg, dp)
elif isinstance(elem, (list, tuple)):
spec = _get_spec_from_args(elem, {})
if spec is not None:
return spec
for k, v in kwargs.items():
if isinstance(v, ColoTensor):
pg = v.get_process_group()
dp = v.dist_spec
return ColoTensorSpec(pg, dp)
return None
class ColoTensor(torch.Tensor):
""" Data Structure for Tensor in Colossal-AI. It is a subclass of torch.Tensor.
Args:
data (torch.Tensor): a torch tensor used as the payload the colotensor.
spec (ColoTensorSpec, optional): the tensor spec of initialization. Defaults to ColoTensorSpec(ReplicaSpec()).
The signature of the function has to be consistent with the __new__ except for the 1st arg.
The class should be initialized with a torch tensor in the following ways.
1. directly init.
>>> pg = ProcessGroup()
>>> colo_t1 = ColoTensor(torch.randn(2,3), spec = ColoTensorSpec(pg, ReplicaSpec())
>>> # If initializaed in a shard model, the tensor passed in is one shard of the global tensor.
>>> shard_spec = ShardSpec(process_group=ProcessGroup(tp=world_size),
>>> dims=[0],
>>> num_partitions=[world_size])
>>> tensor_spec = ColoTensorSpec(pg, shard_spec)
>>> colo_t2 = ColoTensor.from_torch_tensor(t_ref.clone(), tensor_spec)
2. use static method from_torch_tensor
>>> colo_t = ColoTensor.from_torch_tensor(torch.randn(2,3), spec = ColoTensorSpec(pg, ReplicaSpec())
"""
def __new__(cls, data: torch.Tensor, spec: ColoTensorSpec) -> 'ColoTensor':
"""__new__
The signature of the __new__ has to be consistent with the torch.Tensor.
Args:
data (torch.Tensor): a torch tensor used as the payload the colotensor.
spec (TensorSpec, optional): the tensor spec of initialization.
Returns:
ColoTensor: a ColoTensor wrappers the data.
"""
if data is None:
data = torch.empty(0)
return torch.Tensor._make_subclass(cls, data, data.requires_grad)
def __init__(self, data: torch.Tensor, spec: Optional[ColoTensorSpec] = None) -> None:
# If not set spec, use a DP process group and replicate dist spec
if spec is None:
self.has_initialized = False
self.dist_spec = ReplicaSpec()
self.compute_spec = None
self.process_group = ProcessGroup()
else:
self.has_initialized = True
self.dist_spec = spec.dist_attr
self.compute_spec = spec.compute_attr
if spec.pg is None:
self.process_group = ProcessGroup()
else:
self.process_group = spec.pg
self._type = TensorType.NONMODEL
self._graph_node = None
def has_compute_spec(self) -> bool:
return self.compute_spec is not None
def is_model_data(self) -> bool:
return self._type == TensorType.MODEL
def get_process_group(self) -> 'ProcessGroup':
return self.process_group
def set_process_group(self, pg: ProcessGroup):
"""set_process_group
change the pg of the ColoTensor. Note that the valid use cases is limited.
Only existing pg is DP and dist spec is REPLICaTE is valid.
Args:
pg (ProcessGroup): target pg
Raises:
RuntimeError:
RuntimeError:
"""
assert isinstance(pg, ProcessGroup), f"pg as type {type(pg)} is invalid"
# if the new pg is the same as the old pg, just returns
if self.process_group == pg:
return
assert self.process_group.tp_world_size() == 1, \
"Can not set_process_group on a ColoTensor whose process_group has tp world group"
assert self.dist_spec.placement.value == 'r', \
"Can not set_process_group on a ColoTensor whose dist spec is not REPLICATE"
self.process_group = pg
def get_tp_world_size(self) -> int:
return self.process_group.tp_world_size()
def set_dist_spec(self, dist_spec: _DistSpec):
"""set_dist_spec
set dist spec and change the payloads.
Args:
dist_spec (_DistSpec): target dist spec.
"""
assert isinstance(dist_spec, _DistSpec)
assert self.process_group is not None
self._redistribute(dist_spec)
def set_tensor_spec(self, dist_spec, compute_spec):
if dist_spec is not None:
assert isinstance(dist_spec, _DistSpec), f"{type(dist_spec)}"
self.set_dist_spec(dist_spec)
if compute_spec is not None:
self.compute_spec = compute_spec
def has_compute_pattern(self, compute_pattern):
return self.compute_spec.compute_pattern == compute_pattern
@classmethod
def __torch_function__(cls, func, types, args=(), kwargs=None):
if kwargs is None:
kwargs = {}
if not all(issubclass(cls, t) for t in types):
return NotImplemented
global _COLOSSAL_OPS
if func in _COLOSSAL_OPS:
func = _COLOSSAL_OPS[func]
with torch._C.DisableTorchFunction():
ret = func(*args, **kwargs)
if func in _get_my_nowrap_functions():
return ret
else:
colo_spec = _get_spec_from_args(args, kwargs)
return _convert_output(ret, colo_spec)
def __repr__(self):
return f'ColoTensor:\n{super().__repr__()}\n{self.dist_spec}\n{self.process_group}\n{self.compute_spec}'
def _redistribute(self, dist_spec: _DistSpec) -> None:
"""_redistribute
Note the function will not handle the logic of backward propagation!
It is used during model tensor initializations as an internal function.
Args:
dist_spec (_DistSpec): the target dist. spec.
"""
assert self.grad_fn is None, "Current tensor has grad_fn and it can't get converted"
with DistSpecManager.no_grad():
self.data = DistSpecManager.handle_trans_spec(self.data, self.dist_spec, dist_spec, self.process_group)
self.dist_spec = dist_spec
def redistribute(self, dist_spec: _DistSpec, pg: Optional[ProcessGroup] = None) -> 'ColoTensor':
"""redistribute
Redistribute the tensor among processes. The rule is like this:
1. If the pg is None, then redistributed tensor payload among TP process group. Keep the
DP process group still as replicated.
2. If the pg is not not None and not equal to the cureent process group.
First, convert the tensor as replicated among TP process group.
Second, reset the process group.
Third, conver the tensor (new replicated both among tp and dp process group) to the new dist_spec.
Args:
dist_spec (_DistSpec): the new dist spec.
pg (Optional[ProcessGroup], optional): the new process group . Defaults to None.
Returns:
ColoTensor: a redistributed colotensor
"""
if pg is not None and pg != self.get_process_group():
# if the pg is not equal, convert the current tensor to replicated
handled = self.redistribute(ReplicaSpec())
else:
handled = self
pg = self.process_group
ret = DistSpecManager.handle_trans_spec(handled, handled.dist_spec, dist_spec, pg)
return ColoTensor.from_torch_tensor(ret, ColoTensorSpec(pg=pg, dist_attr=dist_spec))
def to_replicate_(self):
"""to_replicate_
an inline member function, converting dist spec of the tensor to REPLICATE
"""
self._redistribute(dist_spec=ReplicaSpec())
def to_replicate(self) -> 'ColoTensor':
"""to_replicate
converting dist spec of the tensor to REPLICATE
"""
return self.redistribute(ReplicaSpec())
@staticmethod
def from_torch_tensor(tensor: torch.Tensor, spec: Optional[ColoTensorSpec] = None) -> 'ColoTensor':
tensor = tensor.as_subclass(ColoTensor)
tensor.__init__(tensor, spec=spec)
return tensor
def __deepcopy__(self, memo):
if id(self) in memo:
return memo[id(self)]
else:
with torch._C.DisableTorchFunction():
data = self.data.clone()
tensor = ColoTensor(data, spec=copy(ColoTensorSpec(self.process_group, self.dist_spec, self.compute_spec)))
memo[id(self)] = tensor
return tensor
# override builtin functions which must use tensor in replicate placement #
def size_local(self, *args) -> torch.Size:
with torch._C.DisableTorchFunction():
return super().size(*args)
def size_global(self, *args) -> torch.Size:
"""override the torch buildin size()
the shape passed in must be in a replicate placement.
Returns:
ColoTensor: a tensor after viewed.
"""
if self.is_replicate():
return self.size_local(*args)
spec = self.dist_spec
dims = spec.dims
num_partitions = spec.num_partitions
# import inspect
# print(*['{:40}| {}:{}\n'.format(x.function, x.filename, x.lineno) for x in inspect.stack()])
size_list = list(self.size_local())
for dim, num_partition in zip(dims, num_partitions):
size_list[dim] *= num_partition
if args == ():
return torch.Size(size_list)
else:
return size_list[args[0]]
# Some API for dist spec check
def is_replicate(self):
return self.dist_spec.placement == DistPlacementPattern.REPLICATE \
or (len(self.dist_spec.num_partitions) == 1
and self.dist_spec.num_partitions[0] == 1) \
or (self.process_group.tp_world_size() == 1)
def is_shard_1dcol(self):
return self.dist_spec.placement == DistPlacementPattern.SHARD \
and len(self.dist_spec.dims) == 1 and self.dist_spec.dims[0] == -1
def is_shard_1drow(self):
return self.dist_spec.placement == DistPlacementPattern.SHARD \
and len(self.dist_spec.dims) == 1 and self.dist_spec.dims[0] == 0
def is_sharded(self):
return self.dist_spec.placement == DistPlacementPattern.SHARD