mirror of https://github.com/hpcaitech/ColossalAI
84 lines
2.6 KiB
Python
84 lines
2.6 KiB
Python
import torch
|
|
import colossalai
|
|
import copy
|
|
import pytest
|
|
import torch.multiprocessing as mp
|
|
from colossalai.amp import convert_to_naive_amp
|
|
from tests.components_to_test.registry import non_distributed_component_funcs
|
|
from colossalai.utils import free_port
|
|
from functools import partial
|
|
|
|
|
|
def check_equal(a, b):
|
|
"""
|
|
This function checks if two tensors are equal within tolerance
|
|
"""
|
|
assert torch.allclose(a.float(), b.float(), rtol=1e-4, atol=1e-3), f'a = {a}, b = {b}'
|
|
|
|
|
|
def run_naive_amp():
|
|
"""
|
|
In this test, we compare the naive fp16 optimizer implemented in colossalai
|
|
and fp32 torch optimizer
|
|
"""
|
|
|
|
# create layer
|
|
test_models = ['repeated_computed_layers', 'nested_model']
|
|
for test_name in test_models:
|
|
get_component_func = non_distributed_component_funcs.get_callable(test_name)
|
|
model_builder, train_dataloader, _, optim_class, _ = get_component_func()
|
|
|
|
# create model
|
|
amp_model = model_builder(checkpoint=True).cuda()
|
|
torch_model = copy.deepcopy(amp_model)
|
|
|
|
# create optimizer
|
|
amp_optimizer = optim_class(amp_model.parameters(), lr=1e-3)
|
|
torch_optimizer = optim_class(torch_model.parameters(), lr=1e-3)
|
|
|
|
# inject naive amp
|
|
amp_config = dict(initial_scale=1)
|
|
amp_model, amp_optimizer = convert_to_naive_amp(amp_model, amp_optimizer, amp_config)
|
|
|
|
# create data
|
|
data_iter = iter(train_dataloader)
|
|
data, label = next(data_iter)
|
|
data = data.cuda()
|
|
|
|
# forward pass
|
|
amp_output = amp_model(data)
|
|
torch_output = torch_model(data)
|
|
assert torch.allclose(amp_output, torch_output, rtol=1e-3, atol=1e-3), f'{amp_output} vs {torch_output}'
|
|
|
|
# backward
|
|
amp_optimizer.backward(amp_output.mean())
|
|
torch_output.mean().backward()
|
|
|
|
# check grad
|
|
for amp_param, torch_param in zip(amp_model.parameters(), torch_model.parameters()):
|
|
torch.allclose(amp_param.grad, torch_param.grad.half(), rtol=1e-3, atol=1e-3)
|
|
|
|
# step
|
|
amp_optimizer.step()
|
|
torch_optimizer.step()
|
|
|
|
# check updated param
|
|
for amp_param, torch_param in zip(amp_model.parameters(), torch_model.parameters()):
|
|
torch.allclose(amp_param, torch_param.half(), rtol=1e-3, atol=1e-3)
|
|
|
|
|
|
def run_dist(rank, world_size, port):
|
|
colossalai.launch(config=dict(), rank=rank, world_size=world_size, port=port, host='localhost')
|
|
run_naive_amp()
|
|
|
|
|
|
@pytest.mark.dist
|
|
def test_naive_amp():
|
|
world_size = 1
|
|
run_func = partial(run_dist, world_size=world_size, port=free_port())
|
|
mp.spawn(run_func, nprocs=world_size)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
test_naive_amp()
|