ab8a47f830
* add dropout layer, add dropout test * modify seed manager as context manager * add a copy of col_nn.layer * add dist_crossentropy loss; separate module test * polish the code * fix dist crossentropy loss |
||
---|---|---|
.. | ||
layer | ||
model | ||
policies | ||
shard | ||
test | ||
utils | ||
README.md | ||
__init__.py |
README.md
⚡️ ShardFormer
📚 Table of Contents
🔗 Introduction
Shardformer is a module that automatically parallelizes the mainstream models in libraries such as HuggingFace and TIMM. This module aims to make parallelization hassle-free for users who are not from the system background.
🔨 Usage
The sample API usage is given below:
from colossalai.shardformer import shard_model
from transformers import BertForMaskedLM
# create huggingface model as normal
model = BertForMaskedLM.from_pretrained("bert-base-uncased")
# make the huggingface model paralleled to ShardModel
# auto policy:
sharded_model = shard_model(model)
# custom policy:
from xxx import <POLICYCLASS>
sharded_model = shard_model(model, <POLICYCLASS>)
# do angthing as normal
...
🔮 Simple example
# inference
colossalai run --nproc_per_node 2 --master_port 29500 test.py --config config.py --mode inference
# train
colossalai run --nproc_per_node 2 --master_port 29500 test.py --config config.py --mode train
💡 Policy
If you wanna parallel the model in a custom way, just overwrite the policy class for the Hugging Face model.
You should do:
- Inherit Policy class
- Overwrite argument_policy method
- In this method, you need to list which layers class you wanna modify and the attributes and parameters in those layers.
- Overwrite inject_policy method (Optional)
- If you need to modify the forward or backward progress.
- Overwrite or add the param recording functions
- These functions use a suffix to record the path of weight or bias for the layer.
- Overwrite binding
More details can be found in shardformer/policies/basepolicy.py
from colossalai.shardformer.policies.basepolicy import Policy, Layer, Col_Layer, Row_Layer, Argument
CustomPolicy(Policy):
@staticmethod
def argument_policy(model_config, shard_config: int) -> Dict[nn.Module,Argument]:
"""
Return a dict, the key is layer will be modified and the value is the Argument class with param setting and param functions
Args:
model_config: The config of transformer model
shard_setting: The config of distributed model
Return:
Dict for the modify policy,
{
origin layer class1 (nn.Module): Argument(
attr_dict = {
argument1: value1,
argument2: value2,
...
},
param_funcs = [
staticmethod1,
staticmethod2,
...
]
),
origin layer class2 (nn.Module): Argument(
attr_dict = {
argument1: value1,
argument2: value2,
...
},
param_funcs = [
staticmethod1,
staticmethod2,
...
]
),
...
}
"""
raise NotImplementedError
@staticmethod
def inject_policy() -> Tuple[nn.Module, nn.Module]:
"""
Return the dict for the inject model
Return:
The injected model, key is the original model and value is the new shardmodel
"""
return ()
@staticmethod
def binding_policy() -> Dict:
"""
Return the dict for the binding model
"""
return NotImplementedError
@staticmethod
def attn_in() -> List:
"""
Attention qkv layer
Returns:
List[Layer]: List of layer object, each layer is the new
"""
return NotImplementedError
@staticmethod
def attn_out() -> List:
"""
Attention output projection layer
Returns:
List[Layer]: List of layer object
"""
return NotImplementedError
@staticmethod
def mlp_in() -> List:
"""
h -> 4h mlp layer
Returns:
List[Layer]: List of layer object
"""
return NotImplementedError
@staticmethod
def mlp_out() -> List:
"""
4h -> h mlp layer
Returns:
List[Layer]: List of layer object
"""
return NotImplementedError
@staticmethod
def embedding() -> List:
"""
Partially slice the embedding layer
vocab_size->vocab_size//gpu_nums
Return:
List[Layer]: List of layer object
"""
return NotImplementedError
@staticmethod
def unembedding() -> List:
"""
Partially slice the embedding layer
vocab_size->vocab_size//gpu_nums
Return:
List[Layer]: List of layer object
"""
return NotImplementedError
😊 Module
- Flowchart
- Important Modules
-
CLASS
shard_model
:This is the user api to use shardformer, just create a model from transformers and define a custom policy or use shardformer autopolicy to make a shard model.
-
CLASS
Layer
:Parameters:
- weight (str): The weight suffix of the layer
- bias (str): The bias suffix of the layer
- replace_layer (:class:
colosalai.nn
): The layer to replace the original layer - ignore (bool): Whether to ignore this layer if it is not in the model
This class is used to specify the replacement policy for a particular layer. If
replace_layer
is None, only parameter partitioning will be performed without replacing the layer class.CLASS
Col_Layer(Layer)
:- gather_output (bool): Whether to gather the output of the layer
This class inherited from
Layer
, representing the layer will be sliced along column.CLASS
Row_Layer(Layer)
:This class inherited from
Layer
, representing the layer will be sliced along row. -
CLASS
Policy
:In Shardformer, this class holds significant importance as it defines the model partitioning methods, required parameter modifications, and model injection techniques all within a single Policy class.
-
Policy.attn_in()/attn_out()/mlp_in()/mlp_out()/embedding()/unembedding()
......These functions define the partitioning methods of the parameters at different locations in the model. Each function returns a list of objects of Layer class that specify the replacement approach for these parameters. Shardformer also supports user-defined functions for modifying their models, in addition to the listed functions.
-
Policy.argument_policy()
In this function, the user should use multiple dict to define which class of layers will require replacement. This includes the attributes and parameters that need to be modified or replaced. Attributes are stored in the form of a "suffix-string: value" dict, while parameters are stored via multiple static methods that return the replacement approach.
-
Policy.inject_policy()
This function will return the injected model to replace the original model. The new model should be a nn.Module class which includes modified forward or backward functions or anything else.
-
Policy.binding_policy()
This function will return the weight sharing information in the model in some dict. The key and value are both the suffixes of the shared parameters.
-
-
CLASS
ModelSharder(model, policy)
:This class helps shard the model, the parameter is the created transformers model and the custom policy. If custom policy is None, shardformer will automatically get already defined policy for the model.
-
ModelShard.inject_model()
This function is used to inject the model to modify the forward and backward progress.
-
ModelShard.replace_layer()
This function is used to replace the original layers with colossalai layer to make them paralleled and can do distributed communication.
-
ModelShard.bind_layer()
This function is used to help different layers share weight or bias.
-
-
CLASS
Slicer
:This class is used to slice tensor according to policy.
- DistCrossEntropy Loss
-
Overview
In order to reduce the communication size, caculate the crossentropy before all gather, refer to Megatron-LM, reduce the communication size from [batch_size * seq_length * vocab_size] to [batch_size * seq_length]. The origin loss function is:
loss = -\log(\frac{\exp(x[class])}{\sum_i\exp(x[i])})
alse can be represented as:
loss = \log(\sum_i\exp(x[i])) - x[class]
-
Step
-
First get the maximum logits across all the devices, make all the logist minus the maximun value to scale the value less than zero to avoid the value of exp being too large
-
Get a mask to mask the logits not in the local device
-
Caculate the loss according to the second formula
-