You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ColossalAI/examples/language/gpt/gemini/train_gpt_demo.py

259 lines
8.4 KiB

import argparse
import os
from contextlib import nullcontext
from functools import partial
from time import time
import psutil
import torch
import torch.nn as nn
from commons.model_zoo import model_builder
from commons.performance_evaluator import get_profile_context
from commons.utils import get_data, get_tflops, get_time_stamp
from packaging import version
import colossalai
from colossalai.accelerator import get_accelerator
from colossalai.booster import Booster
from colossalai.booster.plugin import GeminiPlugin, LowLevelZeroPlugin, TorchDDPPlugin
from colossalai.lazy import LazyInitContext
from colossalai.logging import disable_existing_loggers, get_dist_logger
from colossalai.nn.optimizer import HybridAdam
CAI_VERSION = colossalai.__version__
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--distplan",
type=str,
default="CAI_Gemini",
help="The distributed plan [colossalai, zero1, zero2, torch_ddp, torch_zero].",
)
parser.add_argument(
"--batch_size",
type=int,
default=8,
help="batch size per DP group of training.",
)
parser.add_argument(
"--model_type",
type=str,
default="gpt2_medium",
help="model model scale",
)
parser.add_argument(
"--train_step",
type=int,
default=10,
help="training iterations for test",
)
args = parser.parse_args()
return args
class GPTLMLoss(nn.Module):
def __init__(self):
super().__init__()
self.loss_fn = nn.CrossEntropyLoss()
def forward(self, logits, labels):
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
return self.loss_fn(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
def get_cpu_mem():
return psutil.Process().memory_info().rss / 1024**2
def get_gpu_mem():
return torch.cuda.memory_allocated() / 1024**2
def get_mem_info(prefix=""):
return f"{prefix}GPU memory usage: {get_gpu_mem():.2f} MB, CPU memory usage: {get_cpu_mem():.2f} MB"
def get_model_size(model: nn.Module):
total_numel = 0
for module in model.modules():
for p in module.parameters(recurse=False):
total_numel += p.numel()
return total_numel
def model_size_formatter(numel: int) -> str:
GB_SIZE = 10**9
MB_SIZE = 10**6
KB_SIZE = 10**3
if numel >= GB_SIZE:
return f"{numel / GB_SIZE:.1f}B"
elif numel >= MB_SIZE:
return f"{numel / MB_SIZE:.1f}M"
elif numel >= KB_SIZE:
return f"{numel / KB_SIZE:.1f}K"
else:
return str(numel)
def set_cpu_maximum_parallelism():
conf_str = torch.__config__.parallel_info()
inter_str = conf_str.split("hardware_concurrency() : ")[1]
max_concurrency = inter_str.split("\n")[0]
os.environ["OMP_NUM_THREADS"] = max_concurrency
print(f"environmental variable OMP_NUM_THREADS is set to {max_concurrency}.")
def main():
# version check
# this example is supposed to work for versions greater than 0.2.0
assert version.parse(CAI_VERSION) >= version.parse("0.2.0")
set_cpu_maximum_parallelism()
args = parse_args()
# if args.distplan not in ["colossalai", "torch_ddp", "torch_zero", "zero1", "zero2"]:
if args.distplan not in ["CAI_ZeRO1", "CAI_ZeRO2", "CAI_Gemini", "Pytorch_DDP", "Pytorch_ZeRO"]:
raise TypeError(f"{args.distplan} is error")
# batch size per DP degree
BATCH_SIZE = args.batch_size
SEQ_LEN = 1024
VOCAB_SIZE = 50257
NUM_STEPS = args.train_step
WARMUP_STEPS = 1
assert WARMUP_STEPS < NUM_STEPS, "warmup steps should smaller than the total steps"
assert (NUM_STEPS - WARMUP_STEPS) % 2 == 1, "the number of valid steps should be odd to take the median"
PROF_FLAG = False # The flag of profiling, False by default
disable_existing_loggers()
colossalai.launch_from_torch()
logger = get_dist_logger()
logger.info(f"{args.model_type}, {args.distplan}, batch size {BATCH_SIZE}", ranks=[0])
# build criterion
criterion = GPTLMLoss()
torch.manual_seed(123)
if args.distplan.startswith("CAI"):
ctx = (
LazyInitContext(default_device=get_accelerator().get_current_device())
if args.distplan == "CAI_Gemini"
else nullcontext()
)
# build GPT model
with ctx:
model = model_builder(args.model_type)(checkpoint=True)
# assign running configurations
if args.distplan == "CAI_ZeRO1":
zero_stage = 1
elif args.distplan == "CAI_ZeRO2":
zero_stage = 2
elif args.distplan == "CAI_Gemini":
zero_stage = 3
else:
raise RuntimeError
plugin = None
if args.distplan.startswith("CAI_ZeRO"):
plugin = LowLevelZeroPlugin(
stage=zero_stage, reduce_bucket_size_in_m=12, overlap_communication=True, verbose=True
)
elif args.distplan == "CAI_Gemini":
plugin = GeminiPlugin(search_range_m=128, hidden_dim=model.config.n_embd)
else:
raise RuntimeError
# build a highly optimized gpu/cpu optimizer
optimizer = HybridAdam(model.parameters(), lr=1e-3)
logger.info(get_mem_info(prefix="After init optim, "), ranks=[0])
elif args.distplan.startswith("Pytorch"):
assert args.tp_degree == 1, "The degree of TP should be 1 for DDP examples."
model = model_builder(args.model_type)(checkpoint=True).cuda()
plugin = TorchDDPPlugin()
if args.distplan.endswith("DDP"):
optimizer = torch.optim.Adam(model.parameters(), lr=1e-3)
elif args.distplan.endswith("ZeRO"):
from torch.distributed.optim import ZeroRedundancyOptimizer
optimizer = ZeroRedundancyOptimizer(model.parameters(), optimizer_class=torch.optim.Adam, lr=1e-3)
else:
raise RuntimeError
# wrap your model and optimizer
booster = Booster(plugin=plugin)
model, optimizer, criterion, _, _ = booster.boost(model, optimizer, criterion)
# model is shared after TP
numel = get_model_size(model)
logger.info(f"the size of testing model size is {model_size_formatter(numel)}.")
logger.info(get_mem_info(prefix="After init model, "), ranks=[0])
# Tflops_per_GPU = global_batch * global_numel * seq_len * 8 / #gpu
# = (batch_per_DP_group * dp_degree) * (numel * tp_degree) * seq_len * 8 / (tp_degree * dp_degree)
# = batch_per_DP_group * numel * seq_len * 8
get_tflops_func = partial(get_tflops, numel, BATCH_SIZE, SEQ_LEN)
torch.cuda.synchronize()
model.train()
tflops_list = []
def train_step():
# we just use randomly generated data here
input_ids, attn_mask = get_data(BATCH_SIZE, SEQ_LEN, VOCAB_SIZE)
optimizer.zero_grad()
start = time()
outputs = model(input_ids, attn_mask)
loss = criterion(outputs, input_ids)
torch.cuda.synchronize()
fwd_end = time()
fwd_time = fwd_end - start
logger.info(get_mem_info(prefix=f"[{n + 1}/{NUM_STEPS}] Forward "), ranks=[0])
booster.backward(loss, optimizer)
torch.cuda.synchronize()
bwd_end = time()
bwd_time = bwd_end - fwd_end
logger.info(get_mem_info(prefix=f"[{n + 1}/{NUM_STEPS}] Backward "), ranks=[0])
optimizer.step()
torch.cuda.synchronize()
optim_time = time() - bwd_end
step_time = time() - start
logger.info(get_mem_info(prefix=f"[{n + 1}/{NUM_STEPS}] Optimizer step "), ranks=[0])
step_tflops = get_tflops_func(step_time)
logger.info(
f"[{n + 1}/{NUM_STEPS}] Loss:{loss.item():.3f}, Step time: {step_time:.3f}s, TFLOPS: {get_tflops_func(step_time):.3f}, FWD time: {fwd_time:.3f}s, BWD time: {bwd_time:.3f}s, OPTIM time: {optim_time:.3f}s",
ranks=[0],
)
if n >= WARMUP_STEPS:
tflops_list.append(step_tflops)
demo_profiler = get_profile_context(
PROF_FLAG, WARMUP_STEPS, NUM_STEPS - WARMUP_STEPS, save_dir=f"profile/{get_time_stamp()}-demo"
)
with demo_profiler as prof:
for n in range(NUM_STEPS):
train_step()
prof.step()
tflops_list.sort()
median_index = ((NUM_STEPS - WARMUP_STEPS) >> 1) + WARMUP_STEPS
logger.info(f"Median TFLOPS is {tflops_list[median_index]:.3f}")
torch.cuda.synchronize()
if __name__ == "__main__":
main()