ColossalAI/colossalai/zero/sharded_model/sharded_model_v2.py

214 lines
10 KiB
Python

from ast import Try
import functools
from collections import OrderedDict
from typing import Any, Optional
import torch
import torch.distributed as dist
import torch.nn as nn
from colossalai.context.parallel_mode import ParallelMode
from colossalai.core import global_context as gpc
from colossalai.engine.ophooks import register_ophooks_recursively
from colossalai.engine.ophooks.zero_hook import ZeroHook
from colossalai.engine.paramhooks import BaseParamHookMgr
from colossalai.logging import get_dist_logger
from colossalai.zero.shard_utils import BaseShardStrategy
from colossalai.zero.sharded_model.reduce_scatter import ReduceScatterBucketer
from colossalai.zero.sharded_param import ShardedParamV2
from torch.distributed import ProcessGroup
from torch.nn.parameter import Parameter
from ._zero3_utils import (cast_float_arguments, cast_tensor_to_fp16, cast_tensor_to_fp32, chunk_and_pad,
get_gradient_predivide_factor)
class ShardedModelV2(nn.Module):
def __init__(self,
module: nn.Module,
shard_strategy: BaseShardStrategy,
process_group: Optional[ProcessGroup] = None,
reduce_scatter_process_group: Optional[ProcessGroup] = None,
reduce_scatter_bucket_size_mb: int = 25,
fp32_reduce_scatter: bool = False,
offload_config: Optional[dict] = None,
gradient_predivide_factor: Optional[float] = 1.0,
shard_param: bool = True):
r"""
A demo to reconfigure zero1 shared_model.
Currently do not consider the Optimizer States.
"""
super().__init__()
self.logger = get_dist_logger()
self.process_group = process_group or gpc.get_group(ParallelMode.DATA)
self.reduce_scatter_process_group = reduce_scatter_process_group or self.process_group
self.world_size = dist.get_world_size(self.process_group)
self.rank = dist.get_rank(self.process_group)
# Cast module to fp16 and cuda, in case user didn't use ZeroInitContext
self.module = module.half().cuda()
self.shard_strategy = shard_strategy
self.shard_param = shard_param
# In case user didn't use ZeroInitContext
for param in self.module.parameters():
if not hasattr(param, 'col_attr'):
param.col_attr = ShardedParamV2(param, process_group, rm_torch_payload=True)
if self.shard_param:
self.shard_strategy.shard([param.col_attr.data])
# Register hooks
register_ophooks_recursively(self.module, [ZeroHook(self.shard_strategy)])
self.param_hook_mgr = BaseParamHookMgr(list(self.module.parameters()))
self.param_hook_mgr.register_backward_hooks(self._grad_post_backward_hook)
self.fp32_reduce_scatter = fp32_reduce_scatter
self._cpu_offload: bool = offload_config.get('device', None) == 'cpu' if offload_config else False
# We find if gradient_predivide_factor != 1.0, there may be wrong precision problem
# So we use 1.0 as the default gradient_predivide_factor
# However, if you set gradient_predivide_factor to None, we will set
# gradient_predivide_factor to a value >= 1.0 automatically
self.gradient_predivide_factor: float = gradient_predivide_factor if \
gradient_predivide_factor is not None else \
get_gradient_predivide_factor(self.world_size)
self.gradient_postdivide_factor: float = self.world_size / self.gradient_predivide_factor
self.comm_stream: torch.cuda.Stream = torch.cuda.Stream()
self.reducer = ReduceScatterBucketer(reduce_scatter_bucket_size_mb)
self._require_backward_grad_sync: bool = True
@property
def cpu_offload(self):
return self._cpu_offload
def forward(self, *args: Any, **kwargs: Any) -> torch.Tensor:
args, kwargs = cast_float_arguments(cast_tensor_to_fp16, *args, **kwargs)
outputs = self.module(*args, **kwargs)
return outputs
def backward(self, loss):
loss.backward()
self._final_backward_hook()
def backward_by_grad(self, tensor, grad):
torch.autograd.backward(tensors=tensor, grad_tensors=grad)
self._final_backward_hook()
@torch.no_grad()
def _final_backward_hook(self) -> None:
if self._require_backward_grad_sync:
# Flush any unreduced buckets in the post_backward stream.
with torch.cuda.stream(self.comm_stream):
self.reducer.flush()
torch.cuda.current_stream().wait_stream(self.comm_stream)
if self._cpu_offload:
# Wait for the non-blocking GPU -> CPU grad transfers to finish.
torch.cuda.current_stream().synchronize()
self.reducer.free()
# In case some post bwd hook is not fired
if self.shard_param:
for p in self.module.parameters():
if not p.col_attr.param_is_sharded:
self.shard_strategy.shard([p.col_attr.data])
for p in self.module.parameters():
p.col_attr.bwd_count = 0
if not p.requires_grad:
continue
# Leave the gradient accumulation state as-is if not synchronizing this pass. This ensures p.grad
# remains the unsharded gradient accumulated from prior no-sync passes, and _saved_grad_shard
# remains the sharded gradient from the last synchronized pass. This also allows interleaved no-sync and
# sync passes, if desired.
if not self._require_backward_grad_sync:
continue
# Write grad back to p.grad and set p.col_attr.grad to None
# As sharded optimizer only update a shard of param,
# no matter whether we shard param in sharded model
# We have to make sure the grad is a flat tensor shard
# If world size == 1 and sharded param,
# the shape `grad` is the same as unsharded param
# So we can just use `view(-1)` to ensure grad is a flat tensor shard
p.grad.data = p.col_attr.grad.view(-1)
p.col_attr.grad = None
@torch.no_grad()
def _grad_post_backward_hook(self, param: Parameter, grad: torch.Tensor) -> Optional[torch.Tensor]:
"""
At the start of :func:`_grad_post_backward_hook`, ``param.grad`` contains the
full gradient for the local batch. The reduce-scatter op will save
a single shard of the summed gradient across all
GPUs to param.col_attr.grad. This shard will align with the current GPU rank. For example::
before reduce_scatter:
param.grad (GPU #0): [1, 2, 3, 4]
param.grad (GPU #1): [5, 6, 7, 8]
after reduce_scatter:
param.grad (GPU #0): [6, 8] # 1+5, 2+6
param.grad (GPU #1): [10, 12] # 3+7, 4+8
The local GPU's ``optim.step`` is responsible for updating a single
shard of params, also corresponding to the current GPU's rank. This
alignment is created by `param.col_attr.grad`, which ensures that
the local optimizer only sees the relevant parameter shard.
"""
if grad is None:
return
assert not grad.requires_grad, 'ShardedModel only works with gradients that don\'t require gradients'
if not self._require_backward_grad_sync:
return
self.comm_stream.wait_stream(torch.cuda.current_stream())
with torch.cuda.stream(self.comm_stream):
new_grad = grad.clone()
if self.fp32_reduce_scatter:
new_grad.data = new_grad.data.to(param.dtype)
if self.gradient_predivide_factor > 1.0:
# Average grad by world_size for consistency with PyTorch DDP.
new_grad.data.div_(self.gradient_predivide_factor)
orig_grad_data = new_grad.data
if self.world_size > 1:
grad_chunks = chunk_and_pad(orig_grad_data, self.reduce_scatter_process_group.size())
self.reducer.reduce_scatter_async(grad_chunks,
group=self.reduce_scatter_process_group,
callback_fn=functools.partial(self._reduce_scatter_callback, param))
else:
self._reduce_scatter_callback(param, new_grad)
orig_grad_data.record_stream(self.comm_stream)
def _reduce_scatter_callback(self, param: Parameter, reduced_grad: torch.Tensor) -> None:
if self.gradient_postdivide_factor > 1:
# Average grad by world_size for consistency with PyTorch DDP.
reduced_grad.data.div_(self.gradient_postdivide_factor)
# Make sure we store fp32 grad
reduced_grad.data = cast_tensor_to_fp32(reduced_grad.data)
# Maybe offload
if self._cpu_offload:
reduced_grad.data = reduced_grad.data.cpu()
if param.col_attr.grad is None:
param.col_attr.grad = reduced_grad.data
else:
# When dp size = 1
# param.col_attr.grad is local accumulated grad shard (full but flatten)
# But reduced_grad here is full grad
# We should call `view_as`
param.col_attr.grad.add_(reduced_grad.data.view_as(param.col_attr.grad))
def state_dict(self, destination=None, prefix='', keep_vars=False) -> 'OrderedDict[str, torch.Tensor]':
self.shard_strategy.gather([p.col_attr.data for p in self.module.parameters()])
prev_params = {}
for p in self.module.parameters():
prev_params[p] = p.data
p.data = p.col_attr.data.payload
gathered_state_dict = self.module.state_dict(destination, prefix, keep_vars)
self.shard_strategy.shard([p.col_attr.data for p in self.module.parameters()])
for p in self.module.parameters():
p.data = prev_params[p]
return gathered_state_dict
def load_state_dict(self, state_dict: 'OrderedDict[str, torch.Tensor]', strict: bool = True):
raise NotImplementedError