mirror of https://github.com/hpcaitech/ColossalAI
100 lines
3.6 KiB
Python
100 lines
3.6 KiB
Python
import copy
|
|
import torch
|
|
import torch.nn.functional as F
|
|
import pytest
|
|
import torch.fx
|
|
import torch.multiprocessing as mp
|
|
from torch.fx import GraphModule
|
|
from colossalai.fx import ColoTracer
|
|
import colossalai
|
|
from colossalai.utils import free_port
|
|
from colossalai.core import global_context as gpc
|
|
from colossalai.fx.graph_module import ColoGraphModule
|
|
from colossalai.fx.passes.meta_info_prop import MetaInfoProp, TensorMetadata
|
|
from colossalai.fx.profiler import MetaTensor
|
|
from evoformer.evoformer import evoformer_base
|
|
from chunk_codegen import ChunkCodeGen
|
|
with_codegen = True
|
|
|
|
|
|
def _is_all_gradient_close(m: torch.nn.Module, gm: GraphModule) -> bool:
|
|
for m_p, gm_p in zip(m.parameters(), gm.parameters()):
|
|
if m_p.grad is not None and not torch.allclose(m_p.grad, gm_p.grad):
|
|
return False
|
|
return True
|
|
|
|
|
|
def _is_all_param_close(m: torch.nn.Module, gm: GraphModule) -> bool:
|
|
for m_p, gm_p in zip(m.parameters(), gm.parameters()):
|
|
if m_p.grad is not None and not torch.allclose(m_p.data, gm_p.data):
|
|
return False
|
|
return True
|
|
|
|
|
|
def _test_fwd_and_bwd(model: torch.nn.Module, gm: ColoGraphModule, node, pair):
|
|
now_mem = torch.cuda.memory_allocated() / 1024**2
|
|
with torch.no_grad():
|
|
node0 = node.clone()
|
|
pair0 = pair.clone()
|
|
node1, pair1 = gm(node0, pair0)
|
|
new_now_mem = torch.cuda.memory_allocated() / 1024**2
|
|
new_max_mem = torch.cuda.max_memory_allocated() / 1024**2
|
|
print("now:%.2f max:%.2f" %(new_now_mem - now_mem, new_max_mem - now_mem))
|
|
|
|
# test forward
|
|
with torch.no_grad():
|
|
non_fx_out = model(node, pair)
|
|
fx_out = gm(node, pair)
|
|
assert torch.allclose(non_fx_out[0], fx_out[0], atol=1e-6), "fx_out doesn't comply with original output"
|
|
assert torch.allclose(non_fx_out[1], fx_out[1], atol=1e-6), "fx_out doesn't comply with original output"
|
|
|
|
# test barckward
|
|
# loss0 = non_fx_out[0].sum() + non_fx_out[1].sum()
|
|
# loss0.backward()
|
|
# loss1 = fx_out[0].sum() + fx_out[1].sum()
|
|
# loss1.backward()
|
|
# assert _is_all_param_close(model, gm)
|
|
# assert _is_all_gradient_close(model, gm), "gm doesn't have the same gradient as original one"
|
|
|
|
|
|
def _run_offload_codegen(rank):
|
|
# launch colossalai to make sure we could execute colossalai.utils.checkpoint currectly
|
|
colossalai.launch(config={}, rank=rank, world_size=1, host='localhost', port=free_port(), backend='nccl')
|
|
|
|
# build model and input
|
|
model = evoformer_base().cuda()
|
|
node = torch.randn(1, 100, 300, 256).cuda()
|
|
pair = torch.randn(1, 300, 300, 128).cuda()
|
|
|
|
# trace the module and replace codegen
|
|
graph = ColoTracer().trace(model, meta_args={'node': node.to(torch.device('meta')), 'pair': pair.to(torch.device('meta'))})
|
|
gm_prop = torch.fx.symbolic_trace(model) # must use symbolic_trace
|
|
interp = MetaInfoProp(gm_prop)
|
|
interp.propagate(MetaTensor(node, fake_device='cuda:0'), MetaTensor(pair, fake_device='cuda:0'))
|
|
|
|
# now run it twice to get meta info in graph module, not necessary
|
|
gm = torch.fx.GraphModule(model, graph)
|
|
interp = MetaInfoProp(gm)
|
|
interp.propagate(MetaTensor(node, fake_device='cuda:0'), MetaTensor(pair, fake_device='cuda:0'))
|
|
|
|
codegen = ChunkCodeGen(gm_prop)
|
|
graph.set_codegen(codegen)
|
|
gm = ColoGraphModule(model, graph)
|
|
gm.recompile()
|
|
|
|
# assert we have all the components
|
|
code = graph.python_code("self").src
|
|
print(code)
|
|
|
|
_test_fwd_and_bwd(model, gm, node, pair)
|
|
gpc.destroy()
|
|
|
|
|
|
@pytest.mark.skipif(not with_codegen, reason='torch version is lower than 1.12.0')
|
|
def test_act_ckpt_codegen():
|
|
mp.spawn(_run_offload_codegen, nprocs=1)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
_run_offload_codegen(0)
|