ColossalAI/colossalai/zero/init_ctx/init_context.py

155 lines
5.7 KiB
Python

import functools
import torch
from colossalai.zero.shard_utils import BaseShardStrategy
from colossalai.zero.sharded_param import ShardedParamV2
from colossalai.utils.memory_tracer.allocator import GLOBAL_MODEL_DATA_TRACER
# Inserts _post_init_method at the end of init method
# for all sub classes of torch.nn.Module
class InsertPostInitMethodToModuleSubClasses(object):
def __init__(self):
pass
def __enter__(self):
r"""
Enter the context scope.
"""
def preprocess_after(f):
@functools.wraps(f)
def wrapper(module: torch.nn.Module, *args, **kwargs):
f(module, *args, **kwargs)
self._post_init_method(module)
return wrapper
def _enable_class(cls):
cls._old_init = cls.__init__
cls.__init__ = preprocess_after(cls.__init__)
# The function is called during init subclass.
def _init_subclass(cls, **kwargs):
cls.__init__ = preprocess_after(cls.__init__)
# Replace .__init__() for all existing subclasses of torch.nn.Module
# Excution self._post_init_method after the default init function.
for subclass in torch.nn.modules.module.Module.__subclasses__():
_enable_class(subclass)
# holding on to the current __init__subclass__ for exit
torch.nn.modules.module.Module._old_init_subclass = (torch.nn.modules.module.Module.__init_subclass__)
# Replace .__init__() for future subclasses of torch.nn.Module
torch.nn.modules.module.Module.__init_subclass__ = classmethod(_init_subclass)
self._pre_context_exec()
def __exit__(self, exc_type, exc_value, traceback):
def _disable_class(cls):
cls.__init__ = cls._old_init
# Replace .__init__() for all existing subclasses of torch.nn.Module
for subclass in torch.nn.modules.module.Module.__subclasses__():
_disable_class(subclass)
# Replace .__init__() for future subclasses of torch.nn.Module
torch.nn.modules.module.Module.__init_subclass__ = (torch.nn.modules.module.Module._old_init_subclass)
self._post_context_exec()
# Now that we cleaned up the metaclass injection, raise the exception.
if exc_type is not None:
return False
# To be implemented by inheriting classes
def _post_init_method(self, module):
pass
def _pre_context_exec(self):
pass
def _post_context_exec(self):
pass
class ZeroInitContext(InsertPostInitMethodToModuleSubClasses):
r"""
A context to initialize model.
1. Convert the model to fp16.
2. The paramaters of the module are adapted to type ShardedParameter.
3. Shard the param and grad according to flags.
target_device: the device where param data after exiting the context
shard_strategy: shard strategy instance
shard_param: is param sharded after exiting the context
shard_grad: is param sharded after exiting the context
rm_torch_payload_on_the_fly:
True: remove tensor payload on param.data after module init finished.
False: remove tensor payload on param.data afther the context exist.
This is used when you add some logic to operate tensors in __init__ of module.
See torchvision resnet18.
"""
def __init__(self,
convert_fp16: bool,
target_device: torch.device,
shard_strategy: BaseShardStrategy,
shard_param: bool = False,
shard_grad: bool = False,
rm_torch_payload_on_the_fly=False):
super().__init__()
self.convert_fp16 = convert_fp16
self.target_device = target_device
self.shard_param = shard_param
self.shard_grad = shard_grad
self.shard_strategy = shard_strategy
# FIXME(jiaruifang) now setting it to True is invalid.
self.rm_torch_payload_on_the_fly = False
self.initialized_param_list = []
def _post_context_exec(self):
"""The callback function when the context exits.
"""
if not self.rm_torch_payload_on_the_fly:
for param in self.initialized_param_list:
assert hasattr(param, 'col_attr')
param.col_attr.remove_torch_payload()
del self.initialized_param_list
def _post_init_method(self, module):
r"""The function to call at the end of the constructor of each nn.Module.
"""
for param in module.parameters():
# avoid adapting a param to ShardedParam twice
if hasattr(param, 'col_attr'):
continue
target_device = self.target_device
# convert to fp16 if necessary
if self.convert_fp16:
param.data = param.data.to(torch.half)
if param.grad is not None:
param.grad = param.grad.to(torch.half).to(target_device)
# move torch parameters to the target device
param.data = param.data.to(target_device)
if param.grad is not None:
param.grad = param.grad.to(target_device)
param.col_attr = ShardedParamV2(param, rm_torch_payload=self.rm_torch_payload_on_the_fly)
self.initialized_param_list.append(param)
if self.shard_param:
self.shard_strategy.shard(tensor_list=[param.col_attr._data_sharded_tensor])
GLOBAL_MODEL_DATA_TRACER.trace_tensor(param.col_attr._data_sharded_tensor.payload)
if param.col_attr.grad and self.shard_grad:
self.shard_strategy.shard(tensor_list=[param.col_attr._grad_sharded_tensor])
GLOBAL_MODEL_DATA_TRACER.trace_tensor(param.col_attr._grad_sharded_tensor.payload)