mirror of https://github.com/hpcaitech/ColossalAI
44 lines
1.5 KiB
Python
44 lines
1.5 KiB
Python
from distutils.command.config import config
|
|
import torch
|
|
import torch.nn as nn
|
|
from colossalai.amp.naive_amp import NaiveAMPModel
|
|
from colossalai.context.parallel_mode import ParallelMode
|
|
from colossalai.core import global_context as gpc
|
|
from torch.optim import Optimizer
|
|
from .sharded_model import ShardedModel
|
|
from .sharded_optim import ShardedOptimizer
|
|
|
|
|
|
def convert_to_zero(model: nn.Module, optimizer: Optimizer, level: int, zero_config: dict):
|
|
"""
|
|
A helper function to integrate the model and optimizer with ZeRO optimizer and off-loading
|
|
|
|
:param model: Your model object
|
|
:type model: :class:`torch.nn.Module`
|
|
:param optimizer: Your optimizer object
|
|
:type optimizer: :class:`torch.optim.Optimizer`
|
|
:param level: Optimizer level, can be 2 or 3
|
|
:type level: int
|
|
:param zero_config: Configuration for zero
|
|
:type zero_config: dict
|
|
|
|
:return: (model, optimizer)
|
|
:rtype: Tuple
|
|
"""
|
|
assert 1 <= level <= 3, 'Only ZERO Optimizer Level 1-3 are provided'
|
|
if level in [1, 2]:
|
|
if level == 2:
|
|
if 'partition_grad' in zero_config:
|
|
assert zero_config['partition_grad'], \
|
|
'Sharded Optimizer requires partition_grad to be True'
|
|
else:
|
|
zero_config['partiton_grad'] = True
|
|
model = NaiveAMPModel(model, output_to_fp32=True)
|
|
optimizer = ShardedOptimizer(optimizer, **zero_config)
|
|
else:
|
|
model = ShardedModel(module=model, **zero_config)
|
|
return model, optimizer
|
|
|
|
|
|
__all__ = ['convert_to_zero', 'ShardedModel', 'ShardedOptimizer']
|