ColossalAI/colossalai/zero/__init__.py

44 lines
1.5 KiB
Python

from distutils.command.config import config
import torch
import torch.nn as nn
from colossalai.amp.naive_amp import NaiveAMPModel
from colossalai.context.parallel_mode import ParallelMode
from colossalai.core import global_context as gpc
from torch.optim import Optimizer
from .sharded_model import ShardedModel
from .sharded_optim import ShardedOptimizer
def convert_to_zero(model: nn.Module, optimizer: Optimizer, level: int, zero_config: dict):
"""
A helper function to integrate the model and optimizer with ZeRO optimizer and off-loading
:param model: Your model object
:type model: :class:`torch.nn.Module`
:param optimizer: Your optimizer object
:type optimizer: :class:`torch.optim.Optimizer`
:param level: Optimizer level, can be 2 or 3
:type level: int
:param zero_config: Configuration for zero
:type zero_config: dict
:return: (model, optimizer)
:rtype: Tuple
"""
assert 1 <= level <= 3, 'Only ZERO Optimizer Level 1-3 are provided'
if level in [1, 2]:
if level == 2:
if 'partition_grad' in zero_config:
assert zero_config['partition_grad'], \
'Sharded Optimizer requires partition_grad to be True'
else:
zero_config['partiton_grad'] = True
model = NaiveAMPModel(model, output_to_fp32=True)
optimizer = ShardedOptimizer(optimizer, **zero_config)
else:
model = ShardedModel(module=model, **zero_config)
return model, optimizer
__all__ = ['convert_to_zero', 'ShardedModel', 'ShardedOptimizer']