ColossalAI/tests/test_zero/test_found_inf.py

73 lines
3.0 KiB
Python

from functools import partial
import colossalai
from colossalai.utils.cuda import get_current_device
import pytest
import torch
import torch.multiprocessing as mp
from colossalai.nn.optimizer import HybridAdam
from colossalai.testing import parameterize, rerun_if_address_is_in_use
from colossalai.utils import free_port
from colossalai.zero.init_ctx import ZeroInitContext
from colossalai.zero.shard_utils import BucketTensorShardStrategy
from colossalai.zero.sharded_model import ShardedModelV2
from colossalai.zero.sharded_optim import ShardedOptimizerV2
from colossalai.zero.sharded_optim._utils import has_inf_or_nan
from tests.components_to_test.registry import non_distributed_component_funcs
from tests.test_zero.test_sharded_optim_v2 import _run_step
from common import CONFIG
@parameterize("cpu_offload", [True, False])
@parameterize("shard_strategy_class", [BucketTensorShardStrategy])
@parameterize("gpu_margin_mem_ratio", [0.0, 0.7])
def _run_test_found_inf(cpu_offload, shard_strategy_class, gpu_margin_mem_ratio):
test_models = ['repeated_computed_layers']
shard_strategy = shard_strategy_class()
for model_name in test_models:
get_components_func = non_distributed_component_funcs.get_callable(model_name)
model_builder, train_dataloader, _, optimizer_class, criterion = get_components_func()
with ZeroInitContext(target_device=torch.device(f'cpu:0') if cpu_offload else get_current_device(),
shard_strategy=shard_strategy,
shard_param=True):
zero_model = model_builder(checkpoint=True)
zero_model = ShardedModelV2(
zero_model,
shard_strategy,
tensor_placement_policy='cpu' if cpu_offload else 'cuda',
reuse_fp16_shard=True,
)
sharded_optim = HybridAdam(zero_model.parameters(), lr=1e-3)
sharded_optim = ShardedOptimizerV2(zero_model, sharded_optim, gpu_margin_mem_ratio=gpu_margin_mem_ratio)
for i, (data, label) in enumerate(train_dataloader):
if i > 1:
break
assert zero_model.overflow_counter == 0
data, label = data.cuda(), label.cuda()
_run_step(zero_model, sharded_optim, data, label, criterion, False)
for param in zero_model.parameters():
assert not has_inf_or_nan(param.colo_attr.data_payload)
def _run_dist(rank, world_size, port):
colossalai.launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
_run_test_found_inf()
# use_cpuadam = True can be used with cpu_offload = False
@pytest.mark.dist
@pytest.mark.parametrize("world_size", [1, 2])
@rerun_if_address_is_in_use()
def test_found_inf(world_size):
run_func = partial(_run_dist, world_size=world_size, port=free_port())
mp.spawn(run_func, nprocs=world_size)
if __name__ == '__main__':
test_found_inf(world_size=2)