mirror of https://github.com/hpcaitech/ColossalAI
78 lines
2.9 KiB
Python
78 lines
2.9 KiB
Python
import torch
|
|
from torch.fx import GraphModule
|
|
import torch.nn as nn
|
|
import pytest
|
|
|
|
from colossalai.fx.tracer.tracer import ColoTracer
|
|
from colossalai.tensor.shape_consistency import ShapeConsistencyManager
|
|
from colossalai.device.device_mesh import DeviceMesh
|
|
from colossalai.auto_parallel.solver.strategies_constructor import StrategiesConstructor
|
|
from colossalai.auto_parallel.solver.cost_graph import CostGraph
|
|
from colossalai.auto_parallel.solver.graph_analysis import GraphAnalyser
|
|
from copy import deepcopy
|
|
from colossalai.auto_parallel.solver import Solver
|
|
from colossalai.auto_parallel.solver.options import SolverOptions
|
|
|
|
|
|
class ConvModel(nn.Module):
|
|
|
|
def __init__(self, c_in, c_out):
|
|
super().__init__()
|
|
self.conv1 = nn.Conv2d(c_in, c_out, kernel_size=3)
|
|
self.conv2 = nn.Conv2d(c_out, c_out, kernel_size=3)
|
|
self.conv3 = nn.Conv2d(c_out, c_out, kernel_size=3)
|
|
self.relu = nn.ReLU()
|
|
|
|
def forward(self, x):
|
|
x = x * 2
|
|
x = self.conv1(x)
|
|
x = self.conv2(x)
|
|
x = x / 2
|
|
x = self.conv3(x)
|
|
x = self.relu(x)
|
|
return x
|
|
|
|
|
|
@pytest.mark.skip("for higher testing speed")
|
|
def test_solver():
|
|
physical_mesh_id = torch.arange(0, 4)
|
|
mesh_shape = (2, 2)
|
|
# [[0, 1]
|
|
# [2, 3]]
|
|
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape)
|
|
shape_consistency_manager = ShapeConsistencyManager()
|
|
|
|
tracer = ColoTracer()
|
|
model = ConvModel(16, 32)
|
|
input_sample = {'x': torch.rand(4, 16, 64, 64).to('meta')}
|
|
|
|
# graph():
|
|
# %x : torch.Tensor [#users=1] = placeholder[target=x]
|
|
# %mul : [#users=1] = call_function[target=operator.mul](args = (%x, 2), kwargs = {})
|
|
# %conv1 : [#users=1] = call_module[target=conv1](args = (%mul,), kwargs = {})
|
|
# %conv2 : [#users=1] = call_module[target=conv2](args = (%conv1,), kwargs = {})
|
|
# %truediv : [#users=1] = call_function[target=operator.truediv](args = (%conv2, 2), kwargs = {})
|
|
# %conv3 : [#users=1] = call_module[target=conv3](args = (%truediv,), kwargs = {})
|
|
# %relu : [#users=1] = call_module[target=relu](args = (%conv3,), kwargs = {})
|
|
# return relu
|
|
graph = tracer.trace(root=model, meta_args=input_sample)
|
|
gm = GraphModule(model, graph, model.__class__.__name__)
|
|
|
|
solver_options = SolverOptions(fast=True)
|
|
strategies_constructor = StrategiesConstructor(graph, device_mesh, shape_consistency_manager, solver_options)
|
|
strategies_constructor.build_strategies_and_cost()
|
|
|
|
cost_graph = CostGraph(strategies_constructor.leaf_strategies)
|
|
cost_graph.simplify_graph()
|
|
graph_analyser = GraphAnalyser(gm)
|
|
solver = Solver(gm.graph, strategies_constructor, cost_graph, graph_analyser)
|
|
ret = solver.call_solver_serialized_args()
|
|
|
|
# [ 0 0 13 13 13 13 13 0]
|
|
strategies_combination_list = ret[0]
|
|
assert solver.leaf_strategies[2][13].name == 'S01R = S01R x RR'
|
|
|
|
|
|
if __name__ == '__main__':
|
|
test_solver()
|