ColossalAI/tests/test_auto_parallel/test_batch_norm_handler.py

119 lines
4.7 KiB
Python

import torch
from torch.fx import GraphModule
import torch.nn as nn
import pytest
from colossalai.fx.proxy import ColoProxy
from colossalai.fx.tracer.tracer import ColoTracer
from colossalai.tensor.sharding_spec import ShardingSpec, _DimSpec
from colossalai.auto_parallel.solver.op_handler.batch_norm_handler import BatchNormHandler
from colossalai.auto_parallel.solver.sharding_strategy import ShardingStrategy, StrategiesVector
from colossalai.device.device_mesh import DeviceMesh
class BNModel(nn.Module):
def __init__(self, c):
super().__init__()
self.bn = nn.BatchNorm2d(c)
def forward(self, x):
x = x * 2
x = self.bn(x)
return x
def test_bn_handler():
physical_mesh_id = torch.arange(0, 4)
mesh_shape = (2, 2)
# [[0, 1]
# [2, 3]]
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape)
entire_shape = torch.Size((4, 16, 64, 64))
tracer = ColoTracer()
model = BNModel(16)
input_sample = {'x': torch.rand(4, 16, 64, 64).to('meta')}
# graph():
# %x : torch.Tensor [#users=1] = placeholder[target=x]
# %mul : [#users=1] = call_function[target=operator.mul](args = (%x, 2), kwargs = {})
# %bn : [#users=1] = call_module[target=bn](args = (%mul,), kwargs = {})
# return bn
graph = tracer.trace(root=model, meta_args=input_sample)
gm = GraphModule(model, graph, model.__class__.__name__)
gm.recompile()
# [x, mul, bn, output]
nodes = [node for node in gm.graph.nodes]
# find the sharding strategies for the input node of the bn node
# strategies_for_input = [[R, R, R, R], [R, S0, R, R], [R, S1, R, R], [S0, R, R, R], [S0, S1, R, R], [S1, R, R, R], [S1, S0, R, R]]
strategies_vector_for_input = StrategiesVector(nodes[1])
sharding_option = (None, 0, 1)
for first_sharding_index in sharding_option:
for second_sharding_index in sharding_option:
if first_sharding_index is not None and second_sharding_index == first_sharding_index:
continue
if first_sharding_index is None:
first_dim_spec = _DimSpec([])
else:
first_dim_spec = _DimSpec([first_sharding_index])
if second_sharding_index is None:
second_dim_spec = _DimSpec([])
else:
second_dim_spec = _DimSpec([second_sharding_index])
replica_dim_spec = _DimSpec([])
sharding_sequence = [first_dim_spec, second_dim_spec, replica_dim_spec, replica_dim_spec]
sharding_spec = ShardingSpec(device_mesh=device_mesh,
entire_shape=entire_shape,
sharding_sequence=sharding_sequence)
strategy_name = str(sharding_spec.sharding_sequence)
sharding_strategy = ShardingStrategy(name=strategy_name, output_sharding_spec=sharding_spec)
strategies_vector_for_input.append(sharding_strategy)
setattr(nodes[1], 'strategies_vector', strategies_vector_for_input)
# generate bn strategy
strategies_vector = StrategiesVector(node=nodes[2])
bn_handler = BatchNormHandler(
node=nodes[2],
device_mesh=device_mesh,
strategies_vector=strategies_vector,
)
bn_handler.register_strategy()
# ['RS0 = RS0 x S0', 'S1S0 = RS0 x S0', 'RS1 = RS1 x S1', 'S0S1 = RS1 x S1', 'RR = RR x R', 'S0R = RR x R', 'S1R = RR x R', 'S01R = RR x R', 'RS01 = RS01 x S01',
# 'S0R = S0R x R WITH SYNC_BN', 'S1R = S1R x R WITH SYNC_BN', 'S0S1 = S0S1 x S1 WITH SYNC_BN', 'S1S0 = S1S0 x S0 WITH SYNC_BN', 'S01R = S01R x R WITH SYNC_BN']
strategy_name_list = [strategy.name for strategy in bn_handler.strategies_vector]
# RS = RS x S and strategies based on it, such as
# SS = RS x S
assert 'RS0 = RS0 x S0' in strategy_name_list
assert 'S1S0 = RS0 x S0' in strategy_name_list
assert 'RS1 = RS1 x S1' in strategy_name_list
assert 'S0S1 = RS1 x S1' in strategy_name_list
# RR = RR x R and strategies based on it, such as
# SR = SR x R
assert 'RR = RR x R' in strategy_name_list
assert 'S0R = RR x R' in strategy_name_list
assert 'S1R = RR x R' in strategy_name_list
assert 'S01R = RR x R' in strategy_name_list
# RS01 = RS01 x S01
assert 'RS01 = RS01 x S01' in strategy_name_list
# SR = SR x R WITH SYNC_BN
assert 'S0R = S0R x R WITH SYNC_BN' in strategy_name_list
assert 'S1R = S1R x R WITH SYNC_BN' in strategy_name_list
# SS = SS x S WITH SYNC_BN
assert 'S0S1 = S0S1 x S1 WITH SYNC_BN' in strategy_name_list
assert 'S1S0 = S1S0 x S0 WITH SYNC_BN' in strategy_name_list
# S01R = S01R x R WITH SYNC_BN
assert 'S01R = S01R x R WITH SYNC_BN' in strategy_name_list
if __name__ == '__main__':
test_bn_handler()