ColossalAI/colossalai/fx/tracer/_meta_trace.py

100 lines
3.3 KiB
Python

import torch
from torch.fx import Node, Graph
from torch.fx.graph import _Namespace
from torch.utils._pytree import tree_map
def meta_trace(module: torch.nn.Module, *args, **kwargs) -> Graph:
"""Trace forward and backward graph with MetaTensor
Args:
module (torch.nn.Module): The target module for tracing.
Returns:
graph (torch.fx.Graph): The computation graph.
Usage:
>>> import torchvision.models as tm
>>> model = tm.alexnet()
>>> graph = meta_trace(model, torch.rand(1000, 3, 224, 224))
>>> graph.print_tabular()
"""
graph = Graph()
namespace = graph._graph_namespace
class MetaProxy(torch.Tensor):
"""
A wrapping tensor that hacks `torch.autograd` without patching more `torch.ops.aten` ops.
"""
_tensor: torch.Tensor
_node: Node
__slots__ = ['_tensor', '_node']
@staticmethod
def __new__(cls, tensor, placeholder=False, name=None):
r = torch.Tensor._make_wrapper_subclass(
cls,
tensor.size(),
strides=tensor.stride(),
storage_offset=tensor.storage_offset(),
dtype=tensor.dtype,
layout=tensor.layout,
device='cpu',
requires_grad=tensor.requires_grad) # deceive the frontend for aten selections
r._tensor = tensor
if placeholder:
if name is None:
name = 'input'
r._node = graph.create_node('placeholder',
'placeholder', (graph._root,),
name=namespace.create_name(name, tensor))
# ...the real tensor is held as an element on the tensor.
return r
@classmethod
def __torch_dispatch__(cls, func, types, args=(), kwargs=None):
def unwrap(x):
if isinstance(x, torch.Tensor) and not hasattr(x, '_tensor'):
x = MetaProxy(x)
return x._tensor.to('meta') if isinstance(x, MetaProxy) else x
def get_node(x):
if isinstance(x, torch.Tensor) and not hasattr(x, '_node'):
x = MetaProxy(x, placeholder=True, name='weight')
return x if not hasattr(x, '_node') else x._node
args_node = tree_map(get_node, args)
kwargs_node = tree_map(get_node, kwargs)
node = graph.create_node('call_function', func, args_node, kwargs_node)
args = tree_map(unwrap, args)
kwargs = tree_map(unwrap, kwargs)
# run aten for backend=CPU but actually on backend=Meta
out = func(*args, **kwargs)
# Now, we want to continue propagating this tensor, so we rewrap Tensors in
# our custom tensor subclass
def wrap(x):
return MetaProxy(x) if isinstance(x, torch.Tensor) and not hasattr(x, '_tensor') else x
def set_node(x):
x._node = node
out = tree_map(wrap, out)
tree_map(set_node, out)
return out
def wrap(x):
return MetaProxy(x, True) if isinstance(x, torch.Tensor) else x
args = tree_map(wrap, args)
kwargs = tree_map(wrap, kwargs)
module(*args, **kwargs).sum().backward()
return graph