mirror of https://github.com/hpcaitech/ColossalAI
172 lines
5.5 KiB
Python
172 lines
5.5 KiB
Python
from typing import Any, Callable, Dict, List, Tuple, Type
|
|
|
|
import torch.nn as nn
|
|
from transformers.models.bert.modeling_bert import BertEmbeddings, BertLayer, BertLMPredictionHead
|
|
|
|
import colossalai.shardformer.layer.layers as col_nn
|
|
|
|
from .basepolicy import Argument, Col_Layer, Layer, Policy, Row_Layer
|
|
|
|
|
|
class BertPolicy(Policy):
|
|
|
|
@staticmethod
|
|
def argument_policy(config, world_size: int) -> Dict[nn.Module, Argument]:
|
|
return {
|
|
BertLayer:
|
|
Argument(
|
|
attr_dict={
|
|
# 1. shard hidden size
|
|
"attention.self.all_head_size": config.hidden_size // world_size,
|
|
"crossattention.self.all_head_size": config.hidden_size // world_size,
|
|
# 2. shard number of heads
|
|
"attention.self.num_attention_heads": config.num_attention_heads // world_size,
|
|
"crossattention.self.num_attention_heads": config.num_attention_heads // world_size,
|
|
},
|
|
param_funcs=[BertPolicy.attn_in, BertPolicy.attn_out, BertPolicy.mlp_in, BertPolicy.mlp_out]),
|
|
BertEmbeddings:
|
|
Argument(
|
|
attr_dict={
|
|
# 1. shard vocab size
|
|
# "word_embeddings.num_embeddings": config.vocab_size // world_size,
|
|
# 2. add the size of the sliced embedding layer excluding the last slice
|
|
"word_embeddings.dim_size": (config.vocab_size + world_size - 1) // world_size,
|
|
},
|
|
param_funcs=[
|
|
BertPolicy.embedding,
|
|
]),
|
|
BertLMPredictionHead:
|
|
Argument(
|
|
attr_dict={
|
|
# 1. shard vocab size
|
|
# "word_embeddings.num_embeddings": config.vocab_size // world_size,
|
|
# 2. add the size of the sliced embedding layer excluding the last slice
|
|
},
|
|
param_funcs=[
|
|
BertPolicy.unembedding,
|
|
])
|
|
}
|
|
|
|
@staticmethod
|
|
def binding_policy() -> Dict:
|
|
return {
|
|
"bert.embeddings.word_embeddings.weight": "cls.predictions.decoder.weight",
|
|
}
|
|
|
|
@staticmethod
|
|
def attn_in() -> List:
|
|
return [
|
|
Col_Layer(
|
|
weight="attention.self.query.weight",
|
|
bias="attention.self.query.bias",
|
|
replace_layer=col_nn.Linear1D_Col,
|
|
),
|
|
Col_Layer(
|
|
weight="attention.self.key.weight",
|
|
bias="attention.self.key.bias",
|
|
replace_layer=col_nn.Linear1D_Col,
|
|
),
|
|
Col_Layer(
|
|
weight="attention.self.value.weight",
|
|
bias="attention.self.value.bias",
|
|
replace_layer=col_nn.Linear1D_Col,
|
|
),
|
|
Col_Layer(
|
|
weight="crossattention.self.query.weight",
|
|
bias="crossattention.self.query.bias",
|
|
replace_layer=col_nn.Linear1D_Col,
|
|
ignore=True,
|
|
),
|
|
Col_Layer(
|
|
weight="crossattention.self.key.weight",
|
|
bias="crossattention.self.key.bias",
|
|
replace_layer=col_nn.Linear1D_Col,
|
|
ignore=True,
|
|
),
|
|
Col_Layer(
|
|
weight="crossattention.self.value.weight",
|
|
bias="crossattention.self.value.bias",
|
|
replace_layer=col_nn.Linear1D_Col,
|
|
ignore=True,
|
|
),
|
|
]
|
|
|
|
@staticmethod
|
|
def attn_out() -> List:
|
|
return [
|
|
Row_Layer(
|
|
weight="attention.output.dense.weight",
|
|
bias="attention.output.dense.bias",
|
|
replace_layer=col_nn.Linear1D_Row,
|
|
),
|
|
Row_Layer(
|
|
weight="crossattention.output.dense.weight",
|
|
bias="crossattention.output.dense.bias",
|
|
replace_layer=col_nn.Linear1D_Row,
|
|
ignore=True,
|
|
),
|
|
]
|
|
|
|
@staticmethod
|
|
def mlp_in() -> List:
|
|
return [
|
|
Col_Layer(
|
|
weight="intermediate.dense.weight",
|
|
bias="intermediate.dense.bias",
|
|
replace_layer=col_nn.Linear1D_Col,
|
|
),
|
|
]
|
|
|
|
@staticmethod
|
|
def mlp_out() -> List:
|
|
return [
|
|
Row_Layer(
|
|
weight="output.dense.weight",
|
|
bias="output.dense.bias",
|
|
replace_layer=col_nn.Linear1D_Row,
|
|
),
|
|
]
|
|
|
|
@staticmethod
|
|
def embedding() -> List:
|
|
return [Col_Layer(
|
|
weight="word_embeddings.weight",
|
|
replace_layer=col_nn.VocabParallelEmbedding1D,
|
|
)]
|
|
|
|
@staticmethod
|
|
def unembedding() -> List:
|
|
return [
|
|
Col_Layer(
|
|
weight="decoder.weight",
|
|
bias="decoder.bias",
|
|
replace_layer=col_nn.Linear1D_Col,
|
|
gather_output=True,
|
|
)
|
|
]
|
|
|
|
|
|
from transformers import BertForMaskedLM
|
|
|
|
from colossalai.shardformer.model.modeling_bert import BertForMaskedLM_
|
|
|
|
|
|
class BertForMaskedLMPolicy(BertPolicy):
|
|
|
|
@staticmethod
|
|
def inject_policy() -> Tuple[nn.Module, nn.Module]:
|
|
# return (BertForMaskedLM, BertForMaskedLM_)
|
|
return None
|
|
|
|
|
|
class BertForSequenceClassificationPolicy(BertPolicy):
|
|
|
|
@staticmethod
|
|
def inject_policy() -> Dict:
|
|
return {}
|
|
|
|
|
|
# model = BertForMaskedLM.from_pretrained("bert-base-uncased")
|
|
# _ = BertForMaskedLMPolicy(model)
|
|
# print(isinstance(model,list(_.inject_policy().keys())[0]))
|