ColossalAI/colossalai/cli/check/check_installation.py

201 lines
7.7 KiB
Python

import subprocess
import click
import torch
from torch.utils.cpp_extension import CUDA_HOME
import colossalai
def to_click_output(val):
# installation check output to understandable symbols for readability
VAL_TO_SYMBOL = {True: u'\u2713', False: 'x', None: 'N/A'}
if val in VAL_TO_SYMBOL:
return VAL_TO_SYMBOL[val]
else:
return val
def check_installation():
"""
This function will check the installation of colossalai, specifically, the version compatibility of
colossalai, pytorch and cuda.
Example:
```text
```
Returns: A table of installation information.
"""
found_aot_cuda_ext = _check_aot_built_cuda_extension_installed()
cuda_version = _check_cuda_version()
torch_version, torch_cuda_version = _check_torch_version()
colossalai_verison, torch_version_required, cuda_version_required = _parse_colossalai_version()
# if cuda_version is None, that means either
# CUDA_HOME is not found, thus cannot compare the version compatibility
if not cuda_version:
sys_torch_cuda_compatibility = None
else:
sys_torch_cuda_compatibility = _is_compatible([cuda_version, torch_cuda_version])
# if cuda_version or cuda_version_required is None, that means either
# CUDA_HOME is not found or AOT compilation is not enabled
# thus, there is no need to compare the version compatibility at all
if not cuda_version or not cuda_version_required:
sys_colossalai_cuda_compatibility = None
else:
sys_colossalai_cuda_compatibility = _is_compatible([cuda_version, cuda_version_required])
# if torch_version_required is None, that means AOT compilation is not enabled
# thus there is no need to compare the versions
if torch_version_required is None:
torch_compatibility = None
else:
torch_compatibility = _is_compatible([torch_version, torch_version_required])
click.echo(f'#### Installation Report ####')
click.echo(f'\n------------ Environment ------------')
click.echo(f"Colossal-AI version: {to_click_output(colossalai_verison)}")
click.echo(f"PyTorch version: {to_click_output(torch_version)}")
click.echo(f"CUDA version: {to_click_output(cuda_version)}")
click.echo(f"CUDA version required by PyTorch: {to_click_output(torch_cuda_version)}")
click.echo("")
click.echo(f"Note:")
click.echo(f"1. The table above checks the versions of the libraries/tools in the current environment")
click.echo(f"2. If the CUDA version is N/A, you can set the CUDA_HOME environment variable to locate it")
click.echo(f'\n------------ CUDA Extensions AOT Compilation ------------')
click.echo(f"Found AOT CUDA Extension: {to_click_output(found_aot_cuda_ext)}")
click.echo(f"PyTorch version used for AOT compilation: {to_click_output(torch_version_required)}")
click.echo(f"CUDA version used for AOT compilation: {to_click_output(cuda_version_required)}")
click.echo("")
click.echo(f"Note:")
click.echo(
f"1. AOT (ahead-of-time) compilation of the CUDA kernels occurs during installation when the environment varialbe CUDA_EXT=1 is set"
)
click.echo(f"2. If AOT compilation is not enabled, stay calm as the CUDA kernels can still be built during runtime")
click.echo(f"\n------------ Compatibility ------------")
click.echo(f'PyTorch version match: {to_click_output(torch_compatibility)}')
click.echo(f"System and PyTorch CUDA version match: {to_click_output(sys_torch_cuda_compatibility)}")
click.echo(f"System and Colossal-AI CUDA version match: {to_click_output(sys_colossalai_cuda_compatibility)}")
click.echo(f"")
click.echo(f"Note:")
click.echo(f"1. The table above checks the version compatibility of the libraries/tools in the current environment")
click.echo(
f" - PyTorch version mistach: whether the PyTorch version in the current environment is compatible with the PyTorch version used for AOT compilation"
)
click.echo(
f" - System and PyTorch CUDA version match: whether the CUDA version in the current environment is compatible with the CUDA version required by PyTorch"
)
click.echo(
f" - System and Colossal-AI CUDA version match: whether the CUDA version in the current environment is compatible with the CUDA version used for AOT compilation"
)
def _is_compatible(versions):
"""
Compare the list of versions and return whether they are compatible.
"""
if None in versions:
return False
# split version into [major, minor, patch]
versions = [version.split('.') for version in versions]
for version in versions:
if len(version) == 2:
# x means unknown
version.append('x')
for idx, version_values in enumerate(zip(*versions)):
equal = len(set(version_values)) == 1
if idx in [0, 1] and not equal:
return False
elif idx == 1:
return True
else:
continue
def _parse_colossalai_version():
"""
Get the Colossal-AI version information.
Returns:
colossalai_version: Colossal-AI version.
torch_version_for_aot_build: PyTorch version used for AOT compilation of CUDA kernels.
cuda_version_for_aot_build: CUDA version used for AOT compilation of CUDA kernels.
"""
# colossalai version can be in two formats
# 1. X.X.X+torchX.XXcuXX.X (when colossalai is installed with CUDA extensions)
# 2. X.X.X (when colossalai is not installed with CUDA extensions)
# where X represents an integer.
colossalai_verison = colossalai.__version__.split('+')[0]
try:
torch_version_for_aot_build = colossalai.__version__.split('torch')[1].split('cu')[0]
cuda_version_for_aot_build = colossalai.__version__.split('cu')[1]
except:
torch_version_for_aot_build = None
cuda_version_for_aot_build = None
return colossalai_verison, torch_version_for_aot_build, cuda_version_for_aot_build
def _check_aot_built_cuda_extension_installed():
"""
According to `op_builder/README.md`, the CUDA extension can be built with either
AOT (ahead-of-time) or JIT (just-in-time) compilation.
AOT compilation will build CUDA extensions to `colossalai._C` during installation.
JIT (just-in-time) compilation will build CUDA extensions to `~/.cache/colossalai/torch_extensions` during runtime.
"""
try:
import colossalai._C.fused_optim
found_aot_cuda_ext = True
except ImportError:
found_aot_cuda_ext = False
return found_aot_cuda_ext
def _check_torch_version():
"""
Get the PyTorch version information.
Returns:
torch_version: PyTorch version.
torch_cuda_version: CUDA version required by PyTorch.
"""
# get torch version
torch_version = torch.__version__.split('+')[0]
# get cuda version in pytorch build
torch_cuda_major = torch.version.cuda.split(".")[0]
torch_cuda_minor = torch.version.cuda.split(".")[1]
torch_cuda_version = f'{torch_cuda_major}.{torch_cuda_minor}'
return torch_version, torch_cuda_version
def _check_cuda_version():
"""
Get the CUDA version information.
Returns:
cuda_version: CUDA version found on the system.
"""
# get cuda version
if CUDA_HOME is None:
cuda_version = CUDA_HOME
else:
raw_output = subprocess.check_output([CUDA_HOME + "/bin/nvcc", "-V"], universal_newlines=True)
output = raw_output.split()
release_idx = output.index("release") + 1
release = output[release_idx].split(".")
bare_metal_major = release[0]
bare_metal_minor = release[1][0]
cuda_version = f'{bare_metal_major}.{bare_metal_minor}'
return cuda_version