You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ColossalAI/tests/test_utils/test_colo_checkpoint.py

207 lines
7.5 KiB

import os
import shutil
from copy import deepcopy
import pytest
import torch
import torch.distributed as dist
from torch.optim.lr_scheduler import CosineAnnealingLR, MultiplicativeLR
import colossalai
from colossalai.nn.lr_scheduler import CosineAnnealingWarmupLR
from colossalai.nn.optimizer import ColossalaiOptimizer
from colossalai.tensor import ColoTensor, ComputePattern, ComputeSpec, ProcessGroup, ShardSpec
from colossalai.testing import rerun_if_address_is_in_use, spawn
from colossalai.utils.checkpoint import load_checkpoint, save_checkpoint
from colossalai.utils.cuda import get_current_device
from colossalai.zero import ColoInitContext
from tests.components_to_test.registry import non_distributed_component_funcs
def init_1d_row_linear(weight: ColoTensor, pg: ProcessGroup):
spec = (ShardSpec([-1], [pg.tp_world_size()]), ComputeSpec(ComputePattern.TP1D))
weight.set_process_group(pg)
weight.set_tensor_spec(*spec)
def init_1d_col_linear(weight, pg):
spec = (ShardSpec([0], [pg.tp_world_size()]), ComputeSpec(ComputePattern.TP1D))
weight.set_process_group(pg)
weight.set_tensor_spec(*spec)
def init_1d_row_embedding(weight, pg):
spec = (ShardSpec([0], [pg.tp_world_size()]), ComputeSpec(ComputePattern.TP1D))
weight.set_process_group(pg)
weight.set_tensor_spec(*spec)
def init_1d_col_embedding(weight, pg):
spec = (ShardSpec([-1], [pg.tp_world_size()]), ComputeSpec(ComputePattern.TP1D))
weight.set_process_group(pg)
weight.set_tensor_spec(*spec)
def init_1d_row_for_linear_weight_spec(model, pg: ProcessGroup):
spec = (ShardSpec([-1], [pg.tp_world_size()]), ComputeSpec(ComputePattern.TP1D))
for name, p in model.named_parameters():
if not isinstance(p, ColoTensor):
continue
if 'embed' in name and 'weight' in name:
init_1d_col_embedding(p, pg)
if 'proj1' in name and ('weight' in name or 'bias' in name):
init_1d_col_linear(p, pg)
if 'proj2' in name and 'weight' in name:
init_1d_row_linear(p, pg)
if 'classifier' in name and ('weight' in name or 'bias' in name):
init_1d_col_linear(p, pg)
def check_param_equal(model, torch_model):
for (n, p), (tn, tp) in zip(model.named_parameters(), torch_model.named_parameters()):
assert torch.all(p.data == tp.data), "{} went wrong.\n {} vs {}\n{}".format(n, p, tp, p.shape)
def remove(path):
""" param <path> could either be relative or absolute. """
if os.path.isfile(path) or os.path.islink(path):
os.remove(path)
elif os.path.isdir(path):
shutil.rmtree(path)
else:
raise ValueError("file {} is not a file or dir.".format(path))
def compare_optims(optim1, optim2):
state1 = optim1.state_dict()['state']
state2 = optim2.state_dict()['state']
for k, p1 in state1.items():
if k not in state2:
continue
p2 = state2[k]
for n, t1 in p1.items():
if n not in p2:
continue
t2 = p2[n]
if isinstance(t1, ColoTensor):
assert isinstance(t2, ColoTensor)
assert torch.allclose(t1, t2, rtol=0, atol=0)
def _run_checkpoint(model_name, init_spec_func, use_ddp, use_mp_reload, test_scheduler, pg):
get_components_func = non_distributed_component_funcs.get_callable(model_name)
model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func()
rank = torch.distributed.get_rank()
world_size = torch.distributed.get_world_size()
# set_seed(1)
with ColoInitContext(device=get_current_device()):
model = model_builder(checkpoint=True)
if use_mp_reload:
if 'bert' == model_name:
for name, p in model.named_parameters():
if not isinstance(p, ColoTensor):
continue
# num_class = type_vocab_size = 2 | (8, 2)
if 'classifier' in name and 'weight' in name:
init_1d_row_linear(p, pg)
# num_class = vocab_size = 30524 | (30524, 8)
elif 'word_embeddings' in name and 'weight' in name:
init_1d_row_embedding(p, pg)
# num_class = seq_len = 512 | (512, 8)
elif 'position_embeddings' in name and 'weight' in name:
init_1d_row_embedding(p, pg)
# num_class = type_vocab_size = 2 | (2, 8)
elif 'token_type_embeddings' in name and 'weight' in name:
init_1d_col_embedding(p, pg)
elif p.process_group.tp_world_size() == 1:
p.set_process_group(pg)
elif "simple_net" == model_name:
init_spec_func(model, pg)
model_reload = deepcopy(model)
model = model.cuda()
model.eval()
model_reload = model_reload.cuda()
model_reload.eval()
opt_class = torch.optim.Adam
colo_optimizer = ColossalaiOptimizer(opt_class(model.parameters(), lr=0.1))
colo_optimizer_reload = ColossalaiOptimizer(opt_class(model_reload.parameters(), lr=0.1))
for i, (data, label) in enumerate(train_dataloader):
# Zero grad
colo_optimizer.zero_grad()
colo_optimizer_reload.zero_grad()
data = data.to(get_current_device())
label = label.to(get_current_device())
dist.broadcast(data, pg.tp_rank_list()[0], pg.tp_process_group())
dist.broadcast(label, pg.tp_rank_list()[0], pg.tp_process_group())
# Bcast rank0 data to all processes
if criterion:
output = model(data)
output_reload = model_reload(data)
loss = criterion(output, label)
loss_reload = criterion(output_reload, label)
else:
loss = model(data, label)
loss_reload = model_reload(data, label)
loss.backward()
loss_reload.backward()
colo_optimizer.step()
colo_optimizer_reload.step()
if i > 2:
break
if not os.path.isdir('./checkpoint') and rank == 0:
os.mkdir('./checkpoint')
dist.barrier()
save_checkpoint('./checkpoint', 0, model, colo_optimizer, None)
load_checkpoint('./checkpoint', 0, model_reload, colo_optimizer_reload, None)
check_param_equal(model, model_reload)
compare_optims(colo_optimizer, colo_optimizer_reload)
if rank == 0:
remove('./checkpoint')
dist.barrier()
def run_dist(rank, world_size, port, use_ddp, use_mp_reload, test_scheduler):
colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
pg = ProcessGroup(tp_degree=world_size)
# the data loader of BERT is in DDP mode, causing the input data is not replicated in the TP context
for model_name in ['bert']:
_run_checkpoint(model_name,
init_1d_row_for_linear_weight_spec,
use_ddp,
use_mp_reload,
test_scheduler=test_scheduler,
pg=pg)
@pytest.mark.dist
@pytest.mark.parametrize('world_size', [1, 2])
@pytest.mark.parametrize('use_ddp', [False])
@pytest.mark.parametrize('use_mp_reload', [True, False])
# @pytest.mark.parametrize('test_scheduler', ['colossalai_cosine_warmup', 'torch_cosine', 'torch_lambda'])
@rerun_if_address_is_in_use()
def test_checkpoint(world_size, use_ddp, use_mp_reload, test_scheduler=None):
spawn(run_dist, world_size, use_ddp=use_ddp, use_mp_reload=use_mp_reload, test_scheduler=test_scheduler)
if __name__ == '__main__':
test_checkpoint(2, use_ddp=False, use_mp_reload=True, test_scheduler="torch_cosine")