You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ColossalAI/examples/images/diffusion/ldm/data/lsun.py

111 lines
6.0 KiB

import os
import numpy as np
import PIL
from PIL import Image
from torch.utils.data import Dataset
from torchvision import transforms
# This class is used to create a dataset of images from LSUN dataset for training
class LSUNBase(Dataset):
def __init__(self,
txt_file, # path to the text file containing the list of image paths
data_root, # root directory of the LSUN dataset
size=None, # the size of images to resize to
interpolation="bicubic", # interpolation method to be used while resizing
flip_p=0.5 # probability of random horizontal flipping
):
self.data_paths = txt_file # store path to text file containing list of images
self.data_root = data_root # store path to root directory of the dataset
with open(self.data_paths, "r") as f: # open and read the text file
self.image_paths = f.read().splitlines() # read the lines of the file and store as list
self._length = len(self.image_paths) # store the number of images
# create dictionary to hold image path information
self.labels = {
"relative_file_path_": [l for l in self.image_paths],
"file_path_": [os.path.join(self.data_root, l)
for l in self.image_paths],
}
# set the image size to be resized
self.size = size
# set the interpolation method for resizing the image
self.interpolation = {"linear": PIL.Image.LINEAR,
"bilinear": PIL.Image.BILINEAR,
"bicubic": PIL.Image.BICUBIC,
"lanczos": PIL.Image.LANCZOS,
}[interpolation]
# randomly flip the image horizontally with a given probability
self.flip = transforms.RandomHorizontalFlip(p=flip_p)
def __len__(self):
# return the length of dataset
return self._length
def __getitem__(self, i):
# get the image path for the given index
example = dict((k, self.labels[k][i]) for k in self.labels)
image = Image.open(example["file_path_"])
# convert it to RGB format
if not image.mode == "RGB":
image = image.convert("RGB")
# default to score-sde preprocessing
img = np.array(image).astype(np.uint8) # convert image to numpy array
crop = min(img.shape[0], img.shape[1]) # crop the image to a square shape
h, w, = img.shape[0], img.shape[1] # get the height and width of image
img = img[(h - crop) // 2:(h + crop) // 2,
(w - crop) // 2:(w + crop) // 2] # crop the image to a square shape
image = Image.fromarray(img) # create an image from numpy array
if self.size is not None: # if image size is provided, resize the image
image = image.resize((self.size, self.size), resample=self.interpolation)
image = self.flip(image) # flip the image horizontally with the given probability
image = np.array(image).astype(np.uint8)
example["image"] = (image / 127.5 - 1.0).astype(np.float32) # normalize the image values and convert to float32
return example # return the example dictionary containing the image and its file paths
#A dataset class for LSUN Churches training set.
# It initializes by calling the constructor of LSUNBase class and passing the appropriate arguments.
# The text file containing the paths to the images and the root directory where the images are stored are passed as arguments. Any additional keyword arguments passed to this class will be forwarded to the constructor of the parent class.
class LSUNChurchesTrain(LSUNBase):
def __init__(self, **kwargs):
super().__init__(txt_file="data/lsun/church_outdoor_train.txt", data_root="data/lsun/churches", **kwargs)
#A dataset class for LSUN Churches validation set.
# It is similar to LSUNChurchesTrain except that it uses a different text file and sets the flip probability to zero by default.
class LSUNChurchesValidation(LSUNBase):
def __init__(self, flip_p=0., **kwargs):
super().__init__(txt_file="data/lsun/church_outdoor_val.txt", data_root="data/lsun/churches",
flip_p=flip_p, **kwargs)
# A dataset class for LSUN Bedrooms training set.
# It initializes by calling the constructor of LSUNBase class and passing the appropriate arguments.
class LSUNBedroomsTrain(LSUNBase):
def __init__(self, **kwargs):
super().__init__(txt_file="data/lsun/bedrooms_train.txt", data_root="data/lsun/bedrooms", **kwargs)
# A dataset class for LSUN Bedrooms validation set.
# It is similar to LSUNBedroomsTrain except that it uses a different text file and sets the flip probability to zero by default.
class LSUNBedroomsValidation(LSUNBase):
def __init__(self, flip_p=0.0, **kwargs):
super().__init__(txt_file="data/lsun/bedrooms_val.txt", data_root="data/lsun/bedrooms",
flip_p=flip_p, **kwargs)
# A dataset class for LSUN Cats training set.
# It initializes by calling the constructor of LSUNBase class and passing the appropriate arguments.
# The text file containing the paths to the images and the root directory where the images are stored are passed as arguments.
class LSUNCatsTrain(LSUNBase):
def __init__(self, **kwargs):
super().__init__(txt_file="data/lsun/cat_train.txt", data_root="data/lsun/cats", **kwargs)
# A dataset class for LSUN Cats validation set.
# It is similar to LSUNCatsTrain except that it uses a different text file and sets the flip probability to zero by default.
class LSUNCatsValidation(LSUNBase):
def __init__(self, flip_p=0., **kwargs):
super().__init__(txt_file="data/lsun/cat_val.txt", data_root="data/lsun/cats",
flip_p=flip_p, **kwargs)