mirror of https://github.com/hpcaitech/ColossalAI
aibig-modeldata-parallelismdeep-learningdistributed-computingfoundation-modelsheterogeneous-traininghpcinferencelarge-scalemodel-parallelismpipeline-parallelism
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
70 lines
2.8 KiB
70 lines
2.8 KiB
import pytest |
|
import torch |
|
|
|
import colossalai |
|
from colossalai.context import MOE_CONTEXT |
|
from colossalai.engine.gradient_handler import MoeGradientHandler |
|
from colossalai.nn import MoeLoss |
|
from colossalai.testing import assert_equal_in_group, parameterize, rerun_if_address_is_in_use, spawn |
|
from colossalai.zero.legacy.init_ctx import ZeroInitContext |
|
from colossalai.zero.legacy.shard_utils import BucketTensorShardStrategy, TensorShardStrategy |
|
from colossalai.zero.legacy.sharded_model import ShardedModelV2 |
|
from colossalai.zero.legacy.sharded_model._utils import cast_tensor_to_fp16 |
|
from colossalai.zero.legacy.sharded_model.utils import col_model_deepcopy |
|
from tests.components_to_test.registry import non_distributed_component_funcs |
|
from tests.test_moe.test_moe_zero_init import MoeModel |
|
from tests.test_zero.test_legacy.common import CONFIG, check_grads_padding, run_fwd_bwd |
|
|
|
|
|
@parameterize("enable_autocast", [False]) |
|
@parameterize("shard_strategy_class", [TensorShardStrategy, BucketTensorShardStrategy]) |
|
def run_model_test(enable_autocast, shard_strategy_class): |
|
shard_strategy = shard_strategy_class() |
|
|
|
get_components_func = non_distributed_component_funcs.get_callable('hanging_param_model') |
|
_, train_dataloader, _, optimizer_class, _ = get_components_func() |
|
criterion = MoeLoss(aux_weight=0.01, loss_fn=torch.nn.CrossEntropyLoss) |
|
|
|
with ZeroInitContext(target_device=torch.device('cuda', torch.cuda.current_device()), |
|
shard_strategy=shard_strategy, |
|
shard_param=True): |
|
zero_model = MoeModel(checkpoint=True) |
|
zero_model = ShardedModelV2(zero_model, shard_strategy) |
|
|
|
# check whether parameters are identical in ddp |
|
for name, p in zero_model.named_parameters(): |
|
if not p.colo_attr.param_is_sharded and p.colo_attr.is_replicated: |
|
assert_equal_in_group(p.colo_attr.data_payload) |
|
|
|
model = MoeModel(checkpoint=True).half() |
|
col_model_deepcopy(zero_model, model) |
|
model = model.cuda() |
|
grad_handler = MoeGradientHandler(model) |
|
|
|
for i, (data, label) in enumerate(train_dataloader): |
|
if i > 5: |
|
break |
|
|
|
data, label = cast_tensor_to_fp16(data).cuda(), label.cuda() |
|
run_fwd_bwd(model, data, label, criterion, enable_autocast) |
|
run_fwd_bwd(zero_model, data, label, criterion, enable_autocast) |
|
grad_handler.handle_gradient() |
|
|
|
check_grads_padding(model, zero_model, loose=True) |
|
|
|
|
|
def run_dist(rank, world_size, port): |
|
colossalai.launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') |
|
MOE_CONTEXT.setup(seed=42) |
|
run_model_test() |
|
|
|
|
|
@pytest.mark.dist |
|
@pytest.mark.parametrize("world_size", [2]) |
|
@rerun_if_address_is_in_use() |
|
def test_moe_zero_model(world_size): |
|
spawn(run_dist, world_size) |
|
|
|
|
|
if __name__ == '__main__': |
|
test_moe_zero_model(world_size=2)
|
|
|