mirror of https://github.com/hpcaitech/ColossalAI
aibig-modeldata-parallelismdeep-learningdistributed-computingfoundation-modelsheterogeneous-traininghpcinferencelarge-scalemodel-parallelismpipeline-parallelism
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
34 lines
1.3 KiB
34 lines
1.3 KiB
import torch |
|
|
|
from colossalai.cluster.device_mesh_manager import DeviceMeshInfo, DeviceMeshManager |
|
from colossalai.initialize import launch |
|
from colossalai.logging import disable_existing_loggers |
|
from colossalai.testing import spawn |
|
|
|
|
|
def check_device_mesh_manager(rank, world_size, port): |
|
disable_existing_loggers() |
|
launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') |
|
device_mesh_manager = DeviceMeshManager() |
|
# TODO(ver217): this test is strictly relies on hardware, temporary skip it |
|
# device_mesh_info_auto = DeviceMeshInfo(physical_ids=[0, 1, 2, 3],) |
|
# device_mesh_auto = device_mesh_manager.create_device_mesh('0', device_mesh_info_auto) |
|
# assert device_mesh_auto.shape == (2, 2) |
|
# assert device_mesh_auto._logical_mesh_id.tolist() == [[0, 1], [2, 3]] |
|
|
|
device_mesh_info_with_shape = DeviceMeshInfo( |
|
physical_ids=[0, 1, 2, 3], |
|
mesh_shape=(2, 2), |
|
) |
|
device_mesh_with_shape = device_mesh_manager.create_device_mesh('1', device_mesh_info_with_shape) |
|
|
|
assert device_mesh_with_shape.shape == (2, 2) |
|
assert device_mesh_with_shape._logical_mesh_id.tolist() == [[0, 1], [2, 3]] |
|
|
|
|
|
def test_device_mesh_manager(): |
|
spawn(check_device_mesh_manager, 4) |
|
|
|
|
|
if __name__ == '__main__': |
|
test_device_mesh_manager()
|
|
|