mirror of https://github.com/hpcaitech/ColossalAI
aibig-modeldata-parallelismdeep-learningdistributed-computingfoundation-modelsheterogeneous-traininghpcinferencelarge-scalemodel-parallelismpipeline-parallelism
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
106 lines
4.5 KiB
106 lines
4.5 KiB
import os |
|
|
|
import pytest |
|
import torch |
|
import torch.distributed as dist |
|
from utils import shared_tempdir |
|
|
|
import colossalai |
|
from colossalai.booster import Booster |
|
from colossalai.booster.plugin import GeminiPlugin |
|
from colossalai.booster.plugin.gemini_plugin import GeminiCheckpointIO |
|
from colossalai.nn.optimizer import HybridAdam |
|
from colossalai.testing import check_state_dict_equal, parameterize, rerun_if_address_is_in_use, spawn |
|
from colossalai.zero import ZeroDDP |
|
from colossalai.zero.gemini.chunk import ChunkManager, search_chunk_configuration |
|
from colossalai.zero.gemini.gemini_mgr import GeminiManager |
|
from tests.kit.model_zoo import model_zoo |
|
|
|
|
|
@parameterize('placement_policy', ['cuda', 'cpu']) |
|
@parameterize('model_name', ['transformers_bert_for_sequence_classification']) |
|
@parameterize('use_safetensors', [False, True]) |
|
def exam_state_dict_with_origin(placement_policy, model_name, use_safetensors: bool): |
|
from transformers import BertForSequenceClassification |
|
(model_fn, data_gen_fn, output_transform_fn, _) = next(iter(model_zoo.get_sub_registry(model_name).values())) |
|
bert_model = model_fn() |
|
|
|
with shared_tempdir() as tempdir: |
|
pretrained_path = os.path.join(tempdir, 'pretrained') |
|
bert_model.config.save_pretrained(save_directory=pretrained_path) |
|
|
|
# TODO(ver217): use boost api |
|
config_dict, *_ = search_chunk_configuration(bert_model, search_range_mb=1, search_interval_byte=100) |
|
chunk_manager = ChunkManager(config_dict) |
|
gemini_manager = GeminiManager(placement_policy, chunk_manager) |
|
bert_model = ZeroDDP(bert_model, gemini_manager) |
|
bert_model.train() |
|
|
|
ckpt_io = GeminiCheckpointIO() |
|
model_size = sum(p.numel() * p.element_size() for p in bert_model.parameters()) / 1024**2 |
|
ckpt_io.save_model(bert_model, (pretrained_path), |
|
True, |
|
True, |
|
'', (model_size / 3), |
|
use_safetensors=use_safetensors) |
|
dist.barrier() |
|
new_bert_model = BertForSequenceClassification.from_pretrained(pretrained_path) |
|
check_state_dict_equal(bert_model.state_dict(only_rank_0=False, dtype=torch.float32), |
|
new_bert_model.state_dict(), False) |
|
|
|
|
|
@parameterize('placement_policy', ['cuda', 'cpu']) |
|
@parameterize('shard', [True, False]) |
|
@parameterize('model_name', ['transformers_gpt']) |
|
def exam_state_dict(placement_policy, shard: bool, model_name: str): |
|
(model_fn, data_gen_fn, output_transform_fn, _) = next(iter(model_zoo.get_sub_registry(model_name).values())) |
|
criterion = lambda x: x.mean() |
|
plugin = GeminiPlugin(placement_policy=placement_policy) |
|
booster = Booster(plugin=plugin) |
|
|
|
model = model_fn() |
|
new_model = model_fn() |
|
optimizer = HybridAdam(model.parameters(), lr=0.001) |
|
model, optimizer, criterion, _, _ = booster.boost(model, optimizer, criterion) |
|
new_optimizer = HybridAdam(new_model.parameters(), lr=0.001) |
|
new_model, new_optimizer, criterion, _, _ = booster.boost(new_model, new_optimizer, criterion) |
|
|
|
data = data_gen_fn() |
|
data = {k: v.to('cuda') if torch.is_tensor(v) or 'Tensor' in v.__class__.__name__ else v for k, v in data.items()} |
|
output = model(**data) |
|
output = output_transform_fn(output) |
|
output_key = list(output.keys())[0] |
|
loss = criterion(output[output_key]) |
|
|
|
booster.backward(loss, optimizer) |
|
optimizer.step() |
|
|
|
with shared_tempdir() as tempdir: |
|
model_ckpt_path = f"{tempdir}/model" |
|
optimizer_ckpt_path = f"{tempdir}/optimizer" |
|
booster.save_model(model, model_ckpt_path) |
|
if not shard: |
|
# TODO(ver217): optimizer checkpointing is not supported for sharded checkpoint |
|
booster.save_optimizer(optimizer, optimizer_ckpt_path) |
|
dist.barrier() |
|
|
|
booster.load_model(new_model, model_ckpt_path) |
|
check_state_dict_equal(model.unwrap().state_dict(only_rank_0=False), |
|
new_model.unwrap().state_dict(only_rank_0=False), False) |
|
if not shard: |
|
booster.load_optimizer(new_optimizer, optimizer_ckpt_path) |
|
check_state_dict_equal(optimizer.state_dict(), new_optimizer.state_dict(), False) |
|
|
|
|
|
def run_dist(rank, world_size, port): |
|
config = {} |
|
colossalai.launch(config=config, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') |
|
exam_state_dict() |
|
exam_state_dict_with_origin() |
|
|
|
|
|
@pytest.mark.dist |
|
@pytest.mark.parametrize('world_size', [2]) |
|
@rerun_if_address_is_in_use() |
|
def test_gemini_ckpIO(world_size): |
|
spawn(run_dist, world_size)
|
|
|