Making large AI models cheaper, faster and more accessible
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

106 lines
4.5 KiB

import os
import pytest
import torch
import torch.distributed as dist
from utils import shared_tempdir
import colossalai
from colossalai.booster import Booster
from colossalai.booster.plugin import GeminiPlugin
from colossalai.booster.plugin.gemini_plugin import GeminiCheckpointIO
from colossalai.nn.optimizer import HybridAdam
from colossalai.testing import check_state_dict_equal, parameterize, rerun_if_address_is_in_use, spawn
from colossalai.zero import ZeroDDP
from colossalai.zero.gemini.chunk import ChunkManager, search_chunk_configuration
from colossalai.zero.gemini.gemini_mgr import GeminiManager
from tests.kit.model_zoo import model_zoo
@parameterize('placement_policy', ['cuda', 'cpu'])
@parameterize('model_name', ['transformers_bert_for_sequence_classification'])
@parameterize('use_safetensors', [False, True])
def exam_state_dict_with_origin(placement_policy, model_name, use_safetensors: bool):
from transformers import BertForSequenceClassification
(model_fn, data_gen_fn, output_transform_fn, _) = next(iter(model_zoo.get_sub_registry(model_name).values()))
bert_model = model_fn()
with shared_tempdir() as tempdir:
pretrained_path = os.path.join(tempdir, 'pretrained')
bert_model.config.save_pretrained(save_directory=pretrained_path)
# TODO(ver217): use boost api
config_dict, *_ = search_chunk_configuration(bert_model, search_range_mb=1, search_interval_byte=100)
chunk_manager = ChunkManager(config_dict)
gemini_manager = GeminiManager(placement_policy, chunk_manager)
bert_model = ZeroDDP(bert_model, gemini_manager)
bert_model.train()
ckpt_io = GeminiCheckpointIO()
model_size = sum(p.numel() * p.element_size() for p in bert_model.parameters()) / 1024**2
ckpt_io.save_model(bert_model, (pretrained_path),
True,
True,
'', (model_size / 3),
use_safetensors=use_safetensors)
dist.barrier()
new_bert_model = BertForSequenceClassification.from_pretrained(pretrained_path)
check_state_dict_equal(bert_model.state_dict(only_rank_0=False, dtype=torch.float32),
new_bert_model.state_dict(), False)
@parameterize('placement_policy', ['cuda', 'cpu'])
@parameterize('shard', [True, False])
@parameterize('model_name', ['transformers_gpt'])
def exam_state_dict(placement_policy, shard: bool, model_name: str):
(model_fn, data_gen_fn, output_transform_fn, _) = next(iter(model_zoo.get_sub_registry(model_name).values()))
criterion = lambda x: x.mean()
plugin = GeminiPlugin(placement_policy=placement_policy)
booster = Booster(plugin=plugin)
model = model_fn()
new_model = model_fn()
optimizer = HybridAdam(model.parameters(), lr=0.001)
model, optimizer, criterion, _, _ = booster.boost(model, optimizer, criterion)
new_optimizer = HybridAdam(new_model.parameters(), lr=0.001)
new_model, new_optimizer, criterion, _, _ = booster.boost(new_model, new_optimizer, criterion)
data = data_gen_fn()
data = {k: v.to('cuda') if torch.is_tensor(v) or 'Tensor' in v.__class__.__name__ else v for k, v in data.items()}
output = model(**data)
output = output_transform_fn(output)
output_key = list(output.keys())[0]
loss = criterion(output[output_key])
booster.backward(loss, optimizer)
optimizer.step()
with shared_tempdir() as tempdir:
model_ckpt_path = f"{tempdir}/model"
optimizer_ckpt_path = f"{tempdir}/optimizer"
booster.save_model(model, model_ckpt_path)
if not shard:
# TODO(ver217): optimizer checkpointing is not supported for sharded checkpoint
booster.save_optimizer(optimizer, optimizer_ckpt_path)
dist.barrier()
booster.load_model(new_model, model_ckpt_path)
check_state_dict_equal(model.unwrap().state_dict(only_rank_0=False),
new_model.unwrap().state_dict(only_rank_0=False), False)
if not shard:
booster.load_optimizer(new_optimizer, optimizer_ckpt_path)
check_state_dict_equal(optimizer.state_dict(), new_optimizer.state_dict(), False)
def run_dist(rank, world_size, port):
config = {}
colossalai.launch(config=config, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
exam_state_dict()
exam_state_dict_with_origin()
@pytest.mark.dist
@pytest.mark.parametrize('world_size', [2])
@rerun_if_address_is_in_use()
def test_gemini_ckpIO(world_size):
spawn(run_dist, world_size)