mirror of https://github.com/hpcaitech/ColossalAI
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
62 lines
2.1 KiB
62 lines
2.1 KiB
from functools import partial
|
|
|
|
import colossalai
|
|
import pytest
|
|
import torch
|
|
import torch.multiprocessing as mp
|
|
from colossalai.amp.amp_type import AMP_TYPE
|
|
from colossalai.logging import get_dist_logger
|
|
from colossalai.trainer import Trainer
|
|
from colossalai.utils import MultiTimer, free_port
|
|
from tests.components_to_test.registry import non_distributed_component_funcs
|
|
from colossalai.testing import parameterize
|
|
|
|
BATCH_SIZE = 4
|
|
IMG_SIZE = 32
|
|
NUM_EPOCHS = 200
|
|
|
|
CONFIG = dict(fp16=dict(mode=AMP_TYPE.TORCH))
|
|
|
|
|
|
@parameterize('model_name', ['repeated_computed_layers', 'resnet18', 'nested_model'])
|
|
def run_trainer(model_name):
|
|
get_components_func = non_distributed_component_funcs.get_callable(model_name)
|
|
model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func()
|
|
model = model_builder()
|
|
optimizer = optimizer_class(model.parameters(), lr=1e-3)
|
|
engine, train_dataloader, *_ = colossalai.initialize(model=model,
|
|
optimizer=optimizer,
|
|
criterion=criterion,
|
|
train_dataloader=train_dataloader)
|
|
|
|
logger = get_dist_logger()
|
|
logger.info("engine is built", ranks=[0])
|
|
|
|
timer = MultiTimer()
|
|
trainer = Trainer(engine=engine, logger=logger, timer=timer)
|
|
logger.info("trainer is built", ranks=[0])
|
|
|
|
logger.info("start training", ranks=[0])
|
|
trainer.fit(train_dataloader=train_dataloader,
|
|
test_dataloader=test_dataloader,
|
|
epochs=NUM_EPOCHS,
|
|
max_steps=3,
|
|
display_progress=True,
|
|
test_interval=5)
|
|
torch.cuda.empty_cache()
|
|
|
|
|
|
def run_dist(rank, world_size, port):
|
|
colossalai.launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
|
|
|
|
|
@pytest.mark.dist
|
|
def test_trainer_no_pipeline():
|
|
world_size = 4
|
|
run_func = partial(run_dist, world_size=world_size, port=free_port())
|
|
mp.spawn(run_func, nprocs=world_size)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
test_trainer_no_pipeline()
|