mirror of https://github.com/hpcaitech/ColossalAI
238 lines
7.8 KiB
Python
238 lines
7.8 KiB
Python
import torch
|
|
import triton
|
|
import triton.language as tl
|
|
|
|
|
|
# Triton 2.1.0
|
|
@triton.jit
|
|
def _copy_to_kcache_seqlen_n_kernel(
|
|
KV, # K or V
|
|
KVCache, # KCache or VCache
|
|
BLOCK_TABLES,
|
|
context_lengths,
|
|
stride_kt,
|
|
stride_kh,
|
|
stride_kd,
|
|
stride_cacheb,
|
|
stride_cacheh,
|
|
stride_cachebs,
|
|
stride_cached,
|
|
stride_bts,
|
|
stride_btb,
|
|
block_size,
|
|
n,
|
|
HEAD_DIM: tl.constexpr,
|
|
):
|
|
cur_token_idx = tl.program_id(0)
|
|
cur_seq_idx = cur_token_idx // n
|
|
cur_token_shift = cur_token_idx - (n * (cur_seq_idx + 1))
|
|
# cur_token_shift = cur_token_idx - n * cur_seq_idx
|
|
cur_kv_head_idx = tl.program_id(1)
|
|
|
|
past_kv_seq_len = tl.load(context_lengths + cur_seq_idx) + cur_token_shift
|
|
last_bt_block_idx = past_kv_seq_len // block_size
|
|
block_table_ptr = BLOCK_TABLES + cur_seq_idx * stride_bts
|
|
block_id = tl.load(block_table_ptr + last_bt_block_idx * stride_btb)
|
|
offset_last_block = past_kv_seq_len % block_size
|
|
offsets_dmodel = tl.arange(0, HEAD_DIM)
|
|
offsets_kv = cur_token_idx * stride_kt + cur_kv_head_idx * stride_kh + offsets_dmodel * stride_kd
|
|
kv = tl.load(KV + offsets_kv)
|
|
offsets_kvcache = (
|
|
block_id * stride_cacheb
|
|
+ cur_kv_head_idx * stride_cacheh
|
|
+ offset_last_block * stride_cachebs
|
|
+ offsets_dmodel * stride_cached
|
|
)
|
|
tl.store(KVCache + offsets_kvcache, kv)
|
|
return
|
|
|
|
|
|
# Triton 2.1.0
|
|
@triton.jit
|
|
def _copy_to_kvcache_seqlen1_kernel(
|
|
K, # K
|
|
V, # V
|
|
KCache, # KCache
|
|
VCache, # VCache
|
|
BLOCK_TABLES,
|
|
context_lengths,
|
|
stride_kt,
|
|
stride_kh,
|
|
stride_kd,
|
|
stride_vt,
|
|
stride_vh,
|
|
stride_vd,
|
|
stride_cachekb,
|
|
stride_cachekh,
|
|
stride_cachekbs,
|
|
stride_cachekd,
|
|
stride_cachevb,
|
|
stride_cachevh,
|
|
stride_cachevbs,
|
|
stride_cachevd,
|
|
stride_bts,
|
|
stride_btb,
|
|
block_size,
|
|
HEAD_DIM: tl.constexpr,
|
|
):
|
|
cur_seq_idx = tl.program_id(0)
|
|
cur_kv_head_idx = tl.program_id(1)
|
|
|
|
past_kv_seq_len = tl.load(context_lengths + cur_seq_idx) - 1
|
|
last_bt_block_idx = past_kv_seq_len // block_size
|
|
block_table_ptr = BLOCK_TABLES + cur_seq_idx * stride_bts
|
|
block_id = tl.load(block_table_ptr + last_bt_block_idx * stride_btb)
|
|
offsets_in_last_block = past_kv_seq_len % block_size
|
|
offsets_dmodel = tl.arange(0, HEAD_DIM)
|
|
offsets_k = cur_seq_idx * stride_kt + cur_kv_head_idx * stride_kh + offsets_dmodel * stride_kd
|
|
offsets_v = cur_seq_idx * stride_vt + cur_kv_head_idx * stride_vh + offsets_dmodel * stride_vd
|
|
|
|
k = tl.load(K + offsets_k)
|
|
v = tl.load(V + offsets_v)
|
|
|
|
offsets_kcache = (
|
|
block_id * stride_cachekb
|
|
+ cur_kv_head_idx * stride_cachekh
|
|
+ offsets_in_last_block * stride_cachekbs
|
|
+ offsets_dmodel * stride_cachekd
|
|
)
|
|
offsets_vcache = (
|
|
block_id * stride_cachevb
|
|
+ cur_kv_head_idx * stride_cachevh
|
|
+ offsets_in_last_block * stride_cachevbs
|
|
+ offsets_dmodel * stride_cachevd
|
|
)
|
|
|
|
tl.store(KCache + offsets_kcache, k)
|
|
tl.store(VCache + offsets_vcache, v)
|
|
return
|
|
|
|
|
|
def copy_k_to_blocked_cache(
|
|
k: torch.Tensor, k_cache: torch.Tensor, kv_lengths: torch.Tensor, block_tables: torch.Tensor, n: int = 1
|
|
):
|
|
"""
|
|
Copy keys or values to the blocked key/value cache during decoding stage.
|
|
|
|
Args:
|
|
k (torch.Tensor): [bsz, 1, num_kv_heads, head_dim]/[bsz, num_kv_heads, head_dim] - Keys or values during decoding with seq len 1.
|
|
[bsz * n, num_kv_heads, head_dim] - Keys or values with seq len n
|
|
k_cache (torch.Tensor): [num_blocks, num_kv_heads, block_size, head_dim] - Blocked key or value cache.
|
|
kv_lengths (torch.Tensor): [bsz] - Past key/value sequence lengths plus current sequence length for each sequence.
|
|
block_tables (torch.Tensor): [bsz, max_blocks_per_sequence] - Block tables for each sequence.
|
|
n (int): Number of tokens to copy for each sequence. Default to 1.
|
|
"""
|
|
assert k.size(-1) == k_cache.size(-1), "Incompatible head dim"
|
|
assert k.dtype == k_cache.dtype, "Expected consistent dtype for tensor and cache."
|
|
|
|
k = k.reshape(-1, k.size(-2), k.size(-1)) if k.dim() == 4 else k
|
|
assert k.dim() == 3, f"Invalid k dim {k.dim()}"
|
|
bsz, num_kv_heads, head_dim = k.shape
|
|
# NOTE when n > 1, the shape of k is [bsz * n, num_kv_heads, head_dim]
|
|
if n > 1:
|
|
assert bsz % n == 0, "Each sequence should have the same number of tokens to be copied"
|
|
bsz = bsz // n
|
|
|
|
assert kv_lengths.shape[0] == block_tables.shape[0] == bsz, (
|
|
f"Got incompatible batch size (number of seqs):\n"
|
|
f" Past kv sequence lengths bsz {kv_lengths.shape[0]}; "
|
|
f" block tables bsz {block_tables.shape[0]}, input k batch size {bsz}"
|
|
)
|
|
|
|
# Modify if the shape of kv cahce is changed.
|
|
block_size = k_cache.size(-2)
|
|
|
|
num_warps = 8 if head_dim > 128 else 4
|
|
|
|
grid = (bsz * n, num_kv_heads)
|
|
_copy_to_kcache_seqlen_n_kernel[grid](
|
|
k,
|
|
k_cache,
|
|
block_tables,
|
|
kv_lengths,
|
|
k.stride(0),
|
|
k.stride(1),
|
|
k.stride(2),
|
|
k_cache.stride(0),
|
|
k_cache.stride(1),
|
|
k_cache.stride(2),
|
|
k_cache.stride(3),
|
|
block_tables.stride(0),
|
|
block_tables.stride(1),
|
|
block_size,
|
|
n=n,
|
|
HEAD_DIM=head_dim,
|
|
num_warps=num_warps,
|
|
)
|
|
|
|
|
|
def copy_kv_to_blocked_cache(
|
|
k: torch.Tensor,
|
|
v: torch.Tensor,
|
|
k_cache: torch.Tensor,
|
|
v_cache: torch.Tensor,
|
|
kv_lengths: torch.Tensor,
|
|
block_tables: torch.Tensor,
|
|
):
|
|
"""
|
|
Copy keys or values to the blocked key/value cache during decoding stage.
|
|
|
|
Args:
|
|
k (torch.Tensor): [bsz, 1, num_kv_heads, head_dim]/[bsz, num_kv_heads, head_dim] - Keys during decoding with seq len 1.
|
|
v (torch.Tensor): [bsz, 1, num_kv_heads, head_dim]/[bsz, num_kv_heads, head_dim] - Values during decoding with seq len 1.
|
|
k_cache (torch.Tensor): [num_blocks, num_kv_heads, block_size, head_dim] - Blocked key cache.
|
|
v_cache (torch.Tensor): [num_blocks, num_kv_heads, block_size, head_dim] - Blocked value cache.
|
|
kv_lengths (torch.Tensor): [bsz] - Past key/value sequence lengths plus current sequence length for each sequence.
|
|
block_tables (torch.Tensor): [bsz, max_blocks_per_sequence] - Block tables for each sequence.
|
|
"""
|
|
assert k.size(-1) == k_cache.size(-1), "Incompatible head dim"
|
|
assert k.dtype == k_cache.dtype, "Expected consistent dtype for tensor and cache."
|
|
k = k.squeeze(1) if k.dim() == 4 else k
|
|
assert k.dim() == 3, f"Incompatible k dim {k.dim()}"
|
|
|
|
assert v.size(-1) == v_cache.size(-1), "Incompatible head dim"
|
|
assert v.dtype == v_cache.dtype, "Expected consistent dtype for tensor and cache."
|
|
v = v.squeeze(1) if v.dim() == 4 else v
|
|
assert v.dim() == 3, f"Incompatible v dim {v.dim()}"
|
|
|
|
bsz, num_kv_heads, head_dim = k.shape
|
|
|
|
assert kv_lengths.shape[0] == block_tables.shape[0] == bsz, (
|
|
f"Got incompatible batch size (number of seqs):\n"
|
|
f" Past kv sequence lengths bsz {kv_lengths.shape[0]}; "
|
|
f" block tables bsz {block_tables.shape[0]}, input k batch size {bsz}"
|
|
)
|
|
|
|
# Modify if the shape of kv cahce is changed.
|
|
block_size = k_cache.size(-2)
|
|
|
|
num_warps = 8 if head_dim > 128 else 4
|
|
grid = (bsz, num_kv_heads)
|
|
_copy_to_kvcache_seqlen1_kernel[grid](
|
|
k,
|
|
v,
|
|
k_cache,
|
|
v_cache,
|
|
block_tables,
|
|
kv_lengths,
|
|
k.stride(0),
|
|
k.stride(1),
|
|
k.stride(2),
|
|
v.stride(0),
|
|
v.stride(1),
|
|
v.stride(2),
|
|
k_cache.stride(0),
|
|
k_cache.stride(1),
|
|
k_cache.stride(2),
|
|
k_cache.stride(3),
|
|
v_cache.stride(0),
|
|
v_cache.stride(1),
|
|
v_cache.stride(2),
|
|
v_cache.stride(3),
|
|
block_tables.stride(0),
|
|
block_tables.stride(1),
|
|
block_size,
|
|
HEAD_DIM=head_dim,
|
|
num_warps=num_warps,
|
|
)
|