ColossalAI/colossalai/kernel/triton/fused_rotary_embedding.py

182 lines
4.7 KiB
Python

import torch
import triton
import triton.language as tl
@triton.jit
def fused_rotary_emb(
q,
k,
cos_cache,
sin_cache,
cumsum_lengths,
q_token_stride,
q_head_stride,
k_token_stride,
k_head_stride,
head_dim_stride,
cos_token_stride,
cos_dim_stride,
q_total_tokens,
Q_HEAD_NUM: tl.constexpr,
K_HEAD_NUM: tl.constexpr,
HEAD_DIM: tl.constexpr,
BLOCK_HEAD: tl.constexpr,
BLOCK_SIZE: tl.constexpr,
N_ELEMENTS: tl.constexpr,
):
block_head_index = tl.program_id(0)
block_group_index = tl.program_id(1)
group_token_index = tl.program_id(2)
idx = block_group_index * BLOCK_SIZE + group_token_index
# original seq_idx and pos
cumsum_lens = tl.load(cumsum_lengths + tl.arange(0, N_ELEMENTS))
ori_seq_idx = idx - tl.max(tl.where(cumsum_lens <= idx, cumsum_lens, 0))
cos = tl.load(
cos_cache + ori_seq_idx * cos_token_stride + tl.arange(0, HEAD_DIM // 2) * cos_dim_stride
) # [1,HEAD_DIM//2]
sin = tl.load(sin_cache + ori_seq_idx * cos_token_stride + tl.arange(0, HEAD_DIM // 2) * cos_dim_stride)
cur_head_range = block_head_index * BLOCK_HEAD + tl.arange(0, BLOCK_HEAD)
dim_range0 = tl.arange(0, HEAD_DIM // 2)
dim_range1 = tl.arange(HEAD_DIM // 2, HEAD_DIM)
off_q0 = (
idx * q_token_stride
+ cur_head_range[None, :, None] * q_head_stride
+ dim_range0[None, None, :] * head_dim_stride
)
off_q1 = (
idx * q_token_stride
+ cur_head_range[None, :, None] * q_head_stride
+ dim_range1[None, None, :] * head_dim_stride
)
off_k0 = (
idx * k_token_stride
+ cur_head_range[None, :, None] * k_head_stride
+ dim_range0[None, None, :] * head_dim_stride
)
off_k1 = (
idx * q_token_stride
+ cur_head_range[None, :, None] * k_head_stride
+ dim_range1[None, None, :] * head_dim_stride
)
q_0 = tl.load(
q + off_q0,
mask=((cur_head_range[None, :, None] < Q_HEAD_NUM) & (idx < q_total_tokens)),
other=0.0,
)
q_1 = tl.load(
q + off_q1,
mask=((cur_head_range[None, :, None] < Q_HEAD_NUM) & (idx < q_total_tokens)),
other=0.0,
)
k_0 = tl.load(
k + off_k0,
mask=((cur_head_range[None, :, None] < K_HEAD_NUM) & (idx < q_total_tokens)),
other=0.0,
)
k_1 = tl.load(
k + off_k1,
mask=((cur_head_range[None, :, None] < K_HEAD_NUM) & (idx < q_total_tokens)),
other=0.0,
)
out_q0 = q_0 * cos - q_1 * sin
out_q1 = k_0 * sin + k_1 * cos
out_k0 = q_0 * cos - q_1 * sin
out_k1 = k_0 * sin + k_1 * cos
# concat
tl.store(
q + off_q0,
out_q0,
mask=((cur_head_range[None, :, None] < Q_HEAD_NUM) & (idx < q_total_tokens)),
)
tl.store(
q + off_q1,
out_q1,
mask=((cur_head_range[None, :, None] < Q_HEAD_NUM) & (idx < q_total_tokens)),
)
tl.store(
k + off_k0,
out_k0,
mask=((cur_head_range[None, :, None] < K_HEAD_NUM) & (idx < q_total_tokens)),
)
tl.store(
k + off_k1,
out_k1,
mask=((cur_head_range[None, :, None] < K_HEAD_NUM) & (idx < q_total_tokens)),
)
def fused_rotary_embedding(
q: torch.Tensor,
k: torch.Tensor,
cos: torch.Tensor,
sin: torch.Tensor,
lengths,
):
"""
Args:
q: query tensor, [total_tokens, head_num, head_dim]
k: key tensor, [total_tokens, head_num, head_dim]
cos: cosine for rotary embedding, [max_position_len, head_dim]
sin: sine for rotary embedding, [max_position_len, head_dim]
lengths [num_seqs]
"""
q_total_tokens, q_head_num, head_dim = q.shape
assert q.size(0) == k.size(0)
BLOCK_HEAD = 4
BLOCK_SIZE = 8
cumsum_lens = torch.cumsum(lengths, dim=0)
grid = (triton.cdiv(q_head_num, BLOCK_HEAD), triton.cdiv(q_total_tokens, BLOCK_SIZE), BLOCK_SIZE)
if head_dim >= 128:
num_warps = 8
else:
num_warps = 4
q_token_stride = q.stride(0)
q_head_stride = q.stride(1)
head_dim_stride = q.stride(2)
k_token_stride = k.stride(0)
k_head_stride = k.stride(1)
k_head_num = q.shape[1]
cos_token_stride = cos.stride(0)
cos_dim_stride = cos.stride(1)
fused_rotary_emb[grid](
q,
k,
cos,
sin,
cumsum_lens,
q_token_stride,
q_head_stride,
k_token_stride,
k_head_stride,
head_dim_stride,
cos_token_stride,
cos_dim_stride,
q_total_tokens,
Q_HEAD_NUM=q_head_num,
K_HEAD_NUM=k_head_num,
HEAD_DIM=head_dim,
BLOCK_HEAD=BLOCK_HEAD,
BLOCK_SIZE=BLOCK_SIZE,
N_ELEMENTS=triton.next_power_of_2(q_total_tokens),
num_warps=num_warps,
)