mirror of https://github.com/hpcaitech/ColossalAI
182 lines
4.7 KiB
Python
182 lines
4.7 KiB
Python
import torch
|
|
import triton
|
|
import triton.language as tl
|
|
|
|
|
|
@triton.jit
|
|
def fused_rotary_emb(
|
|
q,
|
|
k,
|
|
cos_cache,
|
|
sin_cache,
|
|
cumsum_lengths,
|
|
q_token_stride,
|
|
q_head_stride,
|
|
k_token_stride,
|
|
k_head_stride,
|
|
head_dim_stride,
|
|
cos_token_stride,
|
|
cos_dim_stride,
|
|
q_total_tokens,
|
|
Q_HEAD_NUM: tl.constexpr,
|
|
K_HEAD_NUM: tl.constexpr,
|
|
HEAD_DIM: tl.constexpr,
|
|
BLOCK_HEAD: tl.constexpr,
|
|
BLOCK_SIZE: tl.constexpr,
|
|
N_ELEMENTS: tl.constexpr,
|
|
):
|
|
block_head_index = tl.program_id(0)
|
|
block_group_index = tl.program_id(1)
|
|
group_token_index = tl.program_id(2)
|
|
idx = block_group_index * BLOCK_SIZE + group_token_index
|
|
|
|
# original seq_idx and pos
|
|
cumsum_lens = tl.load(cumsum_lengths + tl.arange(0, N_ELEMENTS))
|
|
ori_seq_idx = idx - tl.max(tl.where(cumsum_lens <= idx, cumsum_lens, 0))
|
|
cos = tl.load(
|
|
cos_cache + ori_seq_idx * cos_token_stride + tl.arange(0, HEAD_DIM // 2) * cos_dim_stride
|
|
) # [1,HEAD_DIM//2]
|
|
sin = tl.load(sin_cache + ori_seq_idx * cos_token_stride + tl.arange(0, HEAD_DIM // 2) * cos_dim_stride)
|
|
|
|
cur_head_range = block_head_index * BLOCK_HEAD + tl.arange(0, BLOCK_HEAD)
|
|
dim_range0 = tl.arange(0, HEAD_DIM // 2)
|
|
dim_range1 = tl.arange(HEAD_DIM // 2, HEAD_DIM)
|
|
|
|
off_q0 = (
|
|
idx * q_token_stride
|
|
+ cur_head_range[None, :, None] * q_head_stride
|
|
+ dim_range0[None, None, :] * head_dim_stride
|
|
)
|
|
off_q1 = (
|
|
idx * q_token_stride
|
|
+ cur_head_range[None, :, None] * q_head_stride
|
|
+ dim_range1[None, None, :] * head_dim_stride
|
|
)
|
|
|
|
off_k0 = (
|
|
idx * k_token_stride
|
|
+ cur_head_range[None, :, None] * k_head_stride
|
|
+ dim_range0[None, None, :] * head_dim_stride
|
|
)
|
|
off_k1 = (
|
|
idx * q_token_stride
|
|
+ cur_head_range[None, :, None] * k_head_stride
|
|
+ dim_range1[None, None, :] * head_dim_stride
|
|
)
|
|
|
|
q_0 = tl.load(
|
|
q + off_q0,
|
|
mask=((cur_head_range[None, :, None] < Q_HEAD_NUM) & (idx < q_total_tokens)),
|
|
other=0.0,
|
|
)
|
|
|
|
q_1 = tl.load(
|
|
q + off_q1,
|
|
mask=((cur_head_range[None, :, None] < Q_HEAD_NUM) & (idx < q_total_tokens)),
|
|
other=0.0,
|
|
)
|
|
|
|
k_0 = tl.load(
|
|
k + off_k0,
|
|
mask=((cur_head_range[None, :, None] < K_HEAD_NUM) & (idx < q_total_tokens)),
|
|
other=0.0,
|
|
)
|
|
|
|
k_1 = tl.load(
|
|
k + off_k1,
|
|
mask=((cur_head_range[None, :, None] < K_HEAD_NUM) & (idx < q_total_tokens)),
|
|
other=0.0,
|
|
)
|
|
|
|
out_q0 = q_0 * cos - q_1 * sin
|
|
out_q1 = k_0 * sin + k_1 * cos
|
|
|
|
out_k0 = q_0 * cos - q_1 * sin
|
|
out_k1 = k_0 * sin + k_1 * cos
|
|
# concat
|
|
tl.store(
|
|
q + off_q0,
|
|
out_q0,
|
|
mask=((cur_head_range[None, :, None] < Q_HEAD_NUM) & (idx < q_total_tokens)),
|
|
)
|
|
tl.store(
|
|
q + off_q1,
|
|
out_q1,
|
|
mask=((cur_head_range[None, :, None] < Q_HEAD_NUM) & (idx < q_total_tokens)),
|
|
)
|
|
|
|
tl.store(
|
|
k + off_k0,
|
|
out_k0,
|
|
mask=((cur_head_range[None, :, None] < K_HEAD_NUM) & (idx < q_total_tokens)),
|
|
)
|
|
tl.store(
|
|
k + off_k1,
|
|
out_k1,
|
|
mask=((cur_head_range[None, :, None] < K_HEAD_NUM) & (idx < q_total_tokens)),
|
|
)
|
|
|
|
|
|
def fused_rotary_embedding(
|
|
q: torch.Tensor,
|
|
k: torch.Tensor,
|
|
cos: torch.Tensor,
|
|
sin: torch.Tensor,
|
|
lengths,
|
|
):
|
|
"""
|
|
Args:
|
|
q: query tensor, [total_tokens, head_num, head_dim]
|
|
k: key tensor, [total_tokens, head_num, head_dim]
|
|
cos: cosine for rotary embedding, [max_position_len, head_dim]
|
|
sin: sine for rotary embedding, [max_position_len, head_dim]
|
|
lengths [num_seqs]
|
|
"""
|
|
q_total_tokens, q_head_num, head_dim = q.shape
|
|
assert q.size(0) == k.size(0)
|
|
BLOCK_HEAD = 4
|
|
BLOCK_SIZE = 8
|
|
cumsum_lens = torch.cumsum(lengths, dim=0)
|
|
|
|
grid = (triton.cdiv(q_head_num, BLOCK_HEAD), triton.cdiv(q_total_tokens, BLOCK_SIZE), BLOCK_SIZE)
|
|
|
|
if head_dim >= 128:
|
|
num_warps = 8
|
|
else:
|
|
num_warps = 4
|
|
|
|
q_token_stride = q.stride(0)
|
|
q_head_stride = q.stride(1)
|
|
head_dim_stride = q.stride(2)
|
|
|
|
k_token_stride = k.stride(0)
|
|
k_head_stride = k.stride(1)
|
|
|
|
k_head_num = q.shape[1]
|
|
|
|
cos_token_stride = cos.stride(0)
|
|
cos_dim_stride = cos.stride(1)
|
|
|
|
fused_rotary_emb[grid](
|
|
q,
|
|
k,
|
|
cos,
|
|
sin,
|
|
cumsum_lens,
|
|
q_token_stride,
|
|
q_head_stride,
|
|
k_token_stride,
|
|
k_head_stride,
|
|
head_dim_stride,
|
|
cos_token_stride,
|
|
cos_dim_stride,
|
|
q_total_tokens,
|
|
Q_HEAD_NUM=q_head_num,
|
|
K_HEAD_NUM=k_head_num,
|
|
HEAD_DIM=head_dim,
|
|
BLOCK_HEAD=BLOCK_HEAD,
|
|
BLOCK_SIZE=BLOCK_SIZE,
|
|
N_ELEMENTS=triton.next_power_of_2(q_total_tokens),
|
|
num_warps=num_warps,
|
|
)
|